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Abstract

On the Shapes of Tangled Curves

by

Patrick Kessler

Doctor of Philosophy in Engineering- Mechanical Engineering

University of California, Berkeley

Oliver M. O’Reilly, Chair

A new method is introduced for investigating the shapes of space curves. The method

involves analyzing intersections between a curve and a moving manifold. The positions

and orientations of the manifold are determined by the curve itself, and so the method is

invariant under curve translations and rotations.

The method is investigated in detail in two instances, one in which the manifold is a

planar triangle and the other in which the manifold is a disk. Each of these cases involves

unique subtleties that are explored in depth. In all instances of the method, the intersections

between manifold and curve are illustrated as a two dimensional point set. This is the power

of the method, that it allows intricately convoluted space curves to be represented as a single

digestible planar image. Whether one segment of curve wraps around or encircles another

is conveyed by the presence of a line in the plane, no matter how deeply buried in a tangle

these segments may be. Other aspects of the way in which segments fit together also follow

from the method, such as whether the encirclement of one segment about another is tight

or loose.

Although the method provides topological information (such as the linking number of

two curves), we pursue it more for what it tells about curve shape and geometry. The planar

image generated by the method rapidly communicates information about curve structure,
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and so the image can be used as a shape descriptor, that is, as an abbreviation of critical

shape parameters. As shape descriptors, images from the method can be used to rapidly

compare and categorize libraries of curve structures. As a proof of concept demonstration,

the method is used in this way to navigate a representative sample of protein backbone

curves. The method successfully distinguishes between protein molecules from different

structural families.

Oliver M. O’Reilly
Dissertation Committee Chair
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Chapter 1

Introduction

Consider a plate of spaghetti, or the interwoven root tendrils of a plant. These coiled

and tangled curves exhibit a wild disorder that engineers usually avoid when they design

machines. These curves however are ubiquitous in the mechanisms of nature, where they

form beautiful and highly functional structures (see Figure 1.1). This dissertation is about

understanding the geometry and shape of these structures.

Figure 1.1. Protein molecules consist of tangled chains of atoms; the shape of the tangle
determines the function of the protein. Here we show the protein molecule with PDB
identifier 1DUB. This image is from http://bioinfo.nist.gov/hmpd/gallery/room1.html .

In Chapter 2 we review existing tools for characterizing the shapes of space curves. In
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Chapters 3 and 4 we introduce a novel method for characterizing curve shape. Some of

the most exciting applications of this method are to biological fibers, such as entangled

vines, supercoiled DNA, and protein molecules. These fibers have fascinating shapes that

oftentimes need to be classified. In Chapter 6 we use our novel method to construct a metric

on protein molecules. This metric gives rise to new protein classification schemes.

Masses of tangled strands arise all the time in nature, and we have already mentioned

several biological fibers that tangle. For an example of tangled strands made by people,

consider the intertwined microscopic fibers that comprise felt [1]. The properties of indi-

vidual felt fibers and the geometry of entanglement can be related to the bulk properties of

the larger continuum. How strongly can we pull on a felt garment before it rips? How does

the strength of the garment depend on the way in which the microscopic fibers are twisted

together? We anticipate that our methods of looking at entangled strands will help answer

these questions. A suggestive image of microscopic fibers is given in Figure 1.2, and images

of large woven fibers are given in Figure 1.3.

Figure 1.2. Microscopic tangled fibers. The bar in the upper left hand corner is 5 µm long.
This image comes from the website of the nonwovens research group in the Department of
Textile Industries at the University of Leeds, www.nonwovens.leeds.ac.uk/ .

The physical properties of real world curves such as a strand of DNA or a collection

of cloth fibers are not sufficiently captured by topological invariants. For these real world
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Figure 1.3. Larger scale arrangements of fiber. The image of a knitted garment comes
from www.stitchdiva.com , the chain mail comes from www.wikipedia.com , and the basket
comes from www.primitiveways.com .

curves, we need to know for instance how tightly and how loosely two curves wrap around

one another. In this dissertation we introduce an elegant characterization of encirclement

that provides this information. This characterization distinguishes encirclement at different

scales, just as the Fourier transform identifies components of a signal at different frequencies.

In addition to a new way of understanding curve shape which is important for real world

curves (often called physical knots), our characterization provides information on curve

topology, for instance yielding the linking number of two closed curves.

Generally, we consider the pattern of intersections between a curve x and a d-scale

manifold (e.g., a disk, sphere, or triangle with maximum dimension d) associated with

a point x(s) on the curve, (see Figure 1.4). As we vary s, the manifold translates and

rotates along the curve, and intersects the curve at different points. We keep track of where

these intersections occur on the (arc-length parameterized) space curve with a finger-print

like intersection set (I-set) that is easy to analyze and interpret [21]. Manifolds of different

shapes and sizes result in intersection diagrams that emphasize particular structural features

of the underlying curve. For instance, helices leave distinctive signature markings when the
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manifold is a triangle, and parallel strands leave distinctive markings when the manifold is

a disk. Intersection diagrams reflect more than local information. The problem with the

usual global invariants is that they are often too lossy in cases when details of the curve

shape are important.

Figure 1.4. A manifold M is associated with each point x(s) on a curve x. This manifold
may intersect x at other points such as x(t). The pattern of these intersections is recorded
in an I-set (shown at right).

In our approach we represent a curve in 3D as a collection of curves in 2D (i.e., an I-set).

The metric we introduce on space curves is based on comparing their associated I-subsets.

The computational cost associated with this comparison can be dramatically reduced by

turning the 2D I-set into a 1D object. In ongoing work with researchers in structural

bioinformatics, we have used this approach to construct a fast algorithm for comparing

protein molecules (see chapter 5).

Our comparison of space curves is related to work done in the field of computer graphics

on comparing general three dimensional shapes [25, 36]. Web-based search and retrieval

algorithms for shape have been developed that are accurate, fast, and robust. These can

distinguish for instance between something shaped like an airplane and something shaped

like a coffee mug. Many ingenious approaches are used to do this, such as shape distributions

[30], in which a spatial object is characterized by a histogram of the distances between pairs

of points sprinkled randomly over its surface. The histogram is a shape descriptor; something

easier to work with and compare than the original object which nonetheless captures the

object’s essential shape attributes. The I-sets which we consider in this dissertation are
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also shape descriptors. In Chapter 7 we study the shapes of twelve protein molecules using

I-sets as well as shape distributions.

The dissertation ends with a set of concise appendices which offer detail on some of the

algorithms and theoretical constructions that we use. We consider multi-dimensional scaling

in Appendix A, the Kuhn-Munkres algorithm for the assignment problem in Appendix B,

sequential list alignment in Appendix C, and finally, the linking number in Appendix D.

5



Chapter 2

Survey of Curve Characterizations

Here we review common characterizations of three-dimensional space curves. Many of

these are described on an intuitive level in [7], with more rigor in [22], and in contemporary

terms in [13]. The setting for our work is an oriented1 three-dimensional inner product space

over R, often called Euclidean 3-space and denoted by E3. This space rather than R3 is the

appropriate arena for work with physical curves, in which the distance between curve points

is important. Workers who consider curves only in R3 are usually interested in topological

questions. Work on curve topology in R3 applies to curves in the (more structured) E3 due

to a natural homeomorphism between these two spaces. With (E1,E2,E3) an orthonormal

basis for E3, this map takes (x1, x2, x3) ∈ R3 to
∑
xiEi ∈ E3; the inverse map takes x ∈ E3

to (x ·E1,x ·E2,x ·E3) ∈ R3.

A curve is the image of an imbedding x : K −→ E3, where K is a connected subset of R.

We ambiguously use x to denote both the imbedding and its image. This is harmless in our

work as we almost never switch between imbeddings of the same curve. We assume that x

is as differentiable as necessary, and that the distance along x from x(s1) to x(s2) is equal

to |s2 − s1|, i.e., that s is an arc-length parameter for x. A closed curve is a curve in which

K has the form [α, β), and in which x[n](s) −→ x[n](α) as s −→ β, for n ∈ {0, 1, 2, . . . , N}

with N ≥ 0. (x[n](s) denotes the nth derivative of x with respect to s.)
1The space needs to be oriented for the cross product to be well defined.

6



2.1 Tools from Differential Geometry and Topology

2.1.1 The Frenet Triad

At any point x(s) on x, we define the tangent vector t = dx
ds , the curvature κ = ‖dtds‖,

the normal vector n = 1
κ
dt
ds , the binormal vector b = t × n, and finally the torsion τ , by

db
ds = −τn. We call r = 1

κ the radius of curvature of x at s. Although plenty of vectors

besides t and n are geometrically tangent and normal to the curve, these definitions allow us

to say “the tangent vector” and “the normal vector” without ambiguity, (provided κ 6= 0).

The orthonormal vectors t, n, and b are referred to as the Frenet Triad, see Figure 2.1.

Figure 2.1. The Frenet triad vectors t, n and b associated with a point on a space curve.

2.1.2 The Normal Injectivity Radius

The normal injectivity radius ri of x is the radius of the largest singularity-free tube with

centerline x. Singularities arise when a point on the boundary of the normal disk centered

at x(s1) intersects a point on the boundary of the normal disk centered at x(s2 6= s1), and

so a singularity is identified by a pair (s1, s2) of arc length values. The set S of all such

values is a collection of closed intervals on the real line. We establish an equivalence class on

tube singularities (si, sj) by grouping together those for which the segment of S containing

si is connected to the segment of S containing sj . Both classes of singularity are shown in

Figure 2.2.

Professor Séquin has suggested considering tubes with variable thickness. The radius of

these tubes could depend for instance on the curvature of the tube centerline. Thick tubes

7



Figure 2.2. The same curve is the centerline for tubes with different radius values. The
larger tube exhibits singularities from two different classes.

in all their forms apply to many interesting areas of current research, including the growth

of plant tendrils.

2.1.3 Global Radius of Curvature

The global radius of curvature of the curve x : C −→ E3 at the point s ∈ C is given by

rg(s) = min
t,u∈C

R(s, t, u) (2.1)

where R(s, t, u) is the radius of the circle circumscribing the triangle Tstu with vertices x(s),

x(t), and x(u). R(s, t, u) can be computed using the relation

4R(s, t, u)A(s, t, u) = ‖x(s)− x(t)‖ · ‖x(s)− x(u)‖ · ‖x(t)− x(u)‖, (2.2)

where A(s, t, u) is the area of Tstu.

The global radius of curvature was first introduced in [16]. This radius is a continuous

function on C, and satisfies 0 ≤ rg(s) ≤ r(s), where r(s) is the standard curvature of x at s.

The minimum value of the global radius of curvature over C equals the normal injectivity

radius ri of x. In [15] it is noted that a billiard ball with radius less than ri cannot find a

stable resting place on the curve, (i.e., it cannot intersect the curve at three or more points,

counting tangency points twice). Gonzalez and his coworkers call an ideal curve with a

particular knot type one which has the maximum possible ri (among all curves with the

same knot type and the same length). They also prove that a curve x is ideal only if there

8



is a constant a > 0 such that

rg(s) ≥ a for s ∈ J∗,

rg(s) = a for s ∈ C\J∗, (2.3)

where J∗ ⊂ C is the set of points at which the standard radius of curvature vanishes.

Physically, a is the thickness of the ideally shaped curve x.

2.1.4 Winding and Turning

The (signed) number of times a closed plane curve x : S1 −→ E2 wraps around a point

p ∈ E2 is called the winding number of x with respect to p, and is denoted W (x,p) [29].

Here we relax the injectivity requirement on x, and allow the curve to intersect itself at a

finite number of points, (see Figure 2.3).

Figure 2.3. Examples of plane curves and their winding numbers.

Formally, W (x,p) can be calculated by considering the intersections of x with a ray

R emanating from p, where R = {p + αu | α ≥ 0} for some vector u. The only re-

quirement on u is that it be chosen so that R intersects x at finitely many points, and

that wk =sign
(
u× ∂x

∂s

)
is nonzero at each sk ∈ S1 corresponding to an intersection. Then

W (x,p) is the sum of the wk’s. Alternatively, W (x,p) can be defined as the degree of the

map which takes s ∈ S1 to the unit vector from p to x(s). We discuss a degree of map

definition in detail in Appendix D, in the context of the linking number of two space curves.

The turning number of x is the winding number of ẋ with respect to the origin. Unlike

the winding number, the turning number does not depend on some point in addition to the

given space curve.
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2.1.5 Linking Number

Let x and y be closed directed curves in R3. The linking number of x with respect to y

is an integer that captures the number of times one of these curves wraps around the other.

Let T be the product of the domains of x and y. The linking number can be defined as the

degree of the map u : T −→ S2, which assigns to (s, t) the unit vector from x(s) to y(t) (see

Appendix D). This is analogous to the winding number; both linking and winding can be

defined as degrees of maps, corresponding to the number of times one thing wraps around

another.

Like the winding number, Lk(x,y) is a topological invariant; it does not change if the

space in which x and y are imbedded undergoes a continuous transformation. That is, if

we were to construct x and y out of string, Lk(x,y) would have the same value for all

deformations of the string that do not involve cutting either x or y. In Appendix D, we

show that Lk(x,y) is given by the following Gauss Integral

Lk(x,y) =
1

4π

∫
T

(
dx
ds
× dy
dt

)
· x− y
‖x− y‖3

ds dt. (2.4)

Gauss integrals have been used as the basis for an automatic protein classification scheme

[32]. Although the ability to separate x and y without cutting implies that Lk(x,y) = 0,

the converse implication is false, as shown in Figure 2.4.

Figure 2.4. The Whitehead link shows that a zero linking number does not imply that two
closed curves can be physically separated.

2.1.6 Definition of a Strip

Let t(s) be a vector tangent to the space curve x at the point x(s). Let u be a smooth

vector field on the domain D of x, for which u(s) · t(s) = 0 for every s ∈ D. Following

[14], we refer to the pair (x,u) as a strip. We call the limit of Lk(x,x + εu) as ε −→ 0 the

10



linking number of the strip (x,u). An example of a field u associated with a curve x is the

field n of Frenet normal vectors associated with x.

Figure 2.5. Example of a strip where x is a vertical straight line.

2.1.7 Twist and Total Twist Number

Let x : C −→ E3 be a space curve, and let e1(s) and e2(s) be unit tangent and normal

vectors respectively to x(s) at s ∈ C. These two vectors together with e3(s) = e1(s)×e2(s)

comprise an orthonormal triad that rotates like a rigid body with change in s, (i.e., ei =

QEi for some proper-orthogonal operator Q = Q(s), where (E1,E2,E3) is a right-handed

orthonormal basis for E3). Let ω be the angular velocity vector associated with this motion,

(i.e., ω × a = dQ
ds QTa for every a ∈ E3).

The twist ωt of the strip (x, e2) is the e1 component of ω. If e2 is the Frenet normal

vector (which is well defined only when the curvature κ of x is nonzero), the associated

twist is the Frenet torsion τ of the curve.

The total twist number of the strip (x, e2) is given by 1
2π

∮
ωt ds. We denote the total

twist number by Tw(x, e2), and we note that this number need not be an integer. The

integral
∮
ωt ds is often called the total twist of the strip.
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2.1.8 Writhing Number

The writhing number of a closed curve x is defined as

Wr(x) =
1

4π

∫
K×K

(
dx
ds
× dy
dt

)
· x− y
‖x− y‖3

ds dt. (2.5)

In light of (2.4), the writhing number of x is often called the self-linking number of x. The

writhing number is discussed in further detail in Appendix D. As noted in [14], Wr(x) is

independent of rigid motions, dilations, and the direction of travel along x. The writhing,

linking, and total twist numbers associated with a closed curve x and field of normal vectors

u satisfy

Wr(x) = Lk(x,x + εu)− Tw(x,u). (2.6)

Reflections change the signs of Lk, Tw, and Wr. Equation 2.6 and the name writhing

number were first given by Fuller [14] in 1971, however the writhing number concept was

first introduced by Călugăreanu in a series of papers [8, 9, 10] published from 1959 to 1961.

The writhing number is often used as a measure of the extent to which a curve wraps and

coils around itself. Note that (2.5) corresponds to the inductance of a wire in the shape

of a x. This formula can be motivated by “current through a wire” arguments, and the

Biot-Savart law [3].

2.1.9 Directional Writhing Number

If d is a fixed vector not parallel to any tangent vector of x, then following [14], we say

that x and d are in general position, and we define the directional writhing number of x

and d to be the limit of Lk(x,x + εd) as ε −→ 0. We denote this number by Wr(x,d). As

described in [14], Wr(x,d) is simply the sum of the (signed) over and under crossings of x

projected onto the plane normal to d, and averaging Wr(x,d) over all unit vectors d (with

respect to area on the unit sphere S2) gives the writhing number Wr(x)

Wr(x) =
1

4π

∫
S2

Wr(x,d)dA. (2.7)
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2.2 Tools from Molecular Modeling

Several methods of characterizing overall curve shape have been developed for the par-

ticular purpose of characterizing protein molecules.

2.2.1 Ramachandran Plots

A protein molecule consists of a chain of atoms. A Ramachandran plot is a graph of

angles along the length of the main chain that describe how much it is bending. These

plots were introduced by G.N. Ramachandran and his coworkers in 1963. Tamar Schlick

[34] recommends Ramachandran’s biography [33] for historical details.

Consider a chain of N nodes (xk) in E3, with xk connected to xk+1 for k = 1, . . . , N−1.

Let ek = xk+1 − xk, and for k = 2, . . . , N − 3, define the dihedral angle associated with xk

to be the angle between the plane containing ek−1 and ek, and the plane containing ek and

ek+1.

Figure 2.6. Notation for angles and vectors associated with a chain segment.

Formally, let a be the unit vector in the direction of ek−1 − ek(ek · ek−1), let b be

the unit vector in the direction of a × ek, and let c be the unit vector in the direction of

13



ek+1 − ek(ek · ek+1). The dihedral angle associated with xk is then given by

θk = arctan2(y, x), where x = −a · c, and where y = b · c. (2.8)

The arctan2 function accepts Cartesian coordinates x and y for a point in the plane, and

returns the associated angle on (−π, π]. Dihedral angles alone are not enough to reconstruct

the original (piecewise linear) curve in E3, for instance the dihedral angles of any planar

curve are all zero. However, for certain families of curves (such as the backbone curves of

protein molecules), dihedral angles can indicate important information about curve struc-

ture.

The nodes in a protein molecule consist of repeating groups of three atoms: an N , a

Cα, and a C. Numbering these groups (called residues) from 1 to n, a protein chain can be

represented as follows

(N − Cα − C)1 − (N − Cα − C)2 − · · · − (N − Cα − C)n.

We define φk to be the dihedral angle associated with N in the kth residue, and we define

ψk to be the dihedral angle associated with Cα in the kth residue. A Ramachandran plot

consists of the pairs (φk, ψk) plotted in the plane [−π, π)× [−π, π).

These dihedral angle pairs capture rotation about each of the links in a protein chain

(i.e., local curvature). The density and placement of point clusters in a Ramachandran

plot reveal information about low level protein structural components such as α-helices and

β-sheets, but extracting precise information about higher order structures is difficult.

2.3 Tools from Shape Analysis

Many ingenious methods have been developed in the context of computer graphics for

comparing three dimensional shapes [25, 36]. Here we describe one of these as it applies to

space curves.
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Figure 2.7. Ramachandran plot for the protein molecule with PDB identifier 5MBA.

2.3.1 Shape Distributions

A shape distribution [30], is a histogram of the distances between pairs of points sprin-

kled randomly over an object. When the object is a space curve x : K −→ E3, these

distances are the image values of d : K ×K −→ R. In the diagram below, the squiggles on

the torus are level sets of the function d. Moving along one of these squiggles corresponds

to moving two points along the space curve in such a way that the distance between the

points is constant. The pairs of space curve points which are less than a distance s apart

correspond to a (possibly disconnected) region on the torus. We call the percentage of the

total torus area taken up by this region A(s), (i.e., A(s) is the fraction of the area of K×K

over which d has value less than s). When s is big enough, all pairs of curve points are less

than this distance apart, and so A(s) = 1. If s is small, a relatively low percentage of the

total number of curve point pairs is less than this distance apart, and so A(s) is also small.

A(s) is a probability distribution function. The associated density function dA
ds is used as a

shape descriptor for the space curve x.
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Curve Distances Probability Distribution Probability Density

x : K −→ E3 d : K ×K −→ R A(s) is the percentage of the A′ is short for dA
ds

(s1, s2) 7→ ‖x(s1)− x(s2)‖ torus area over which d < s.
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Chapter 3

Intersection with Triangles

Here we consider the intersections that a space curve makes with a set of planar triangles.

Each triangle has vertices on the space curve, and so comprises a planar region with an

orientation and extent that depends on the space curve geometry; these triangles can be

thought of as frames that match the local orientation of the space curve. Intersections

between these triangles and other points on the curve correspond to an encirclement or

wrapping of one segment of curve about another. The collective set of all these intersections

is rich with information about curve shape and rich with patterns generally. In our eventual

application (Chapter 7), we use these patterns as shape descriptors for curves; two curves

with similar shapes have intersection sets that are similar. One of the most significant

advantages of using intersection sets to compare curves is that they are invariant under

curve translation and rotation (although curiously not under curve reflection).

3.1 Definition of an E-set

Let x and y be arc-length parameterized curve in E3, as illustrated in Figure 3.1. Pick

a point x(s) on x, and a scale value d > 0 such that x(s− d) and x(s+ d) are defined. The

points x(s − d), x(s), and x(s + d) are the vertices of an open triangle in E3 that we call

the (d-scale) encirclement triangle based at s. If the point y(t) intersects this triangle, then
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the pair (s, t) is said to be an element of the (d-scale) encirclement set Ed of x about y; we

say that x at s encircles y at t, and that y at t is encircled by x at s.

y(t1) y(t2)
t1

t2

x(s-d)

x(s)

x(s+d)

s

Figure 3.1. A d-scale E-set (left) gives information about the structure of the space curves
(right). The point s on the E-set x-axis corresponds to the point x(s) on the space curve
x. The triangle with vertices x(s), x(s − d), and x(s + d) intersects the space curve y at
y(t1) and at y(t2), and so (s, t1) and (s, t2) are E-set elements. The encirclement at (s, t2)
is positive, and the encirclement at (s, t1) is negative.

An E-set is a particular type of I-set. In general, elements of an I-set (short for encir-

clement set) almost always comprise a finite collection of open curves (called strands) in the

st-plane. We identify the sign of an E-set element (s, t) ∈ Ed with the sign of the scalar

triple product [x(s− d)− x(s),x(s+ d)− x(s),u(t)], where u(t) is the unit tangent vector

at y(t).

When x is an open curve, (s, t) is in Ed only if x(s) is at least a distance d along x from

either endpoint of x. This causes Ed to consist of strands in the rectangle [d, lx−d]× [0, ly],

where the arc-length parameters for x and y take values on the intervals [0, lx] and [0, ly]

respectively (see Figure 3.2).

3.1.1 Self-Encirclement

The encirclement construction is meaningful for a single curve, as we show in Figure

3.3. We identify this case by referring to it as self-encirclement.
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Ly

LxLxd -d

Figure 3.2. When x is open, Ed consists of strands in [d, lx − d]× [0, ly].

x(s)

s 

Figure 3.3. Self-encirclement of a trefoil knot. The arc-length position of the triangle vertex
x(s) corresponds to the dotted vertical line crossing the E-set x-axis at s. The E-set strands
intersecting this dotted line correspond to the two points at which x intersects the triangle.

3.1.2 Combining the E-sets of Multiple Curves

There are four distinct E-sets associated with the space curves x and y. Using Ed(x,y)

to denote the E-set of x with respect to y, these four E-sets are given by Ed(x,y), Ed(y,x),

Ed(x,x), and Ed(y,y). As shown in Figure 3.4, these E-sets correspond to two squares

and two rectangles that can be positioned in the st-plane so as to give a single square meta

E-set.

In general, the n2 E-sets associated with the n space curves x1, x2, . . . , xn can be

assembled in the st-plane to give a single meta E-set which shows the intersection properties
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E (x,y)d

E (x,x)d E (y,x)d

E (y,y)d

Figure 3.4. Meta E-set for curves x and y.

of the collection of curves as a whole. Formally, with li the length of curve xi, and with

l0 = 0, we use si ∈ [li−1, li] as an arc-length parameter for xi, and we construct the meta

E-set by taking the union of the E-sets Ed(xi,xj).

The converse to collecting different curves together is to partition a single curve into

segments, and to consider the E-set for the single curve as a meta E-set which shows the

intersection properties of the many curve segments. This point of view reveals the extent to

which one segment of the single curve encircles or is encircled by other segments of the same

curve. It is easy to imagine ways in which this construction could be useful; for instance,

if the single curve x consists of two separate globules in E3 that are connected by a single

strand, then the E-set for x will have vacant off-diagonal blocks, as illustrated in Figure

3.5.

In several industrial processes (e.g., the felting of nonwoven fabric [1]), the mobility of

a segment of strand through a bulk of tangled strands is important. The degree to which a

segment is encircled affects this mobility.
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Figure 3.5. Vacant off-diagonal blocks indicate separate globules connected by a single
strand.

3.2 Local Geometry

Suppose that (s, t) is an element of the encirclement set Ed of x with respect to y. Let

a be the unit vector from y(s) to y(s− d), let b be the unit vector from y(s) to y(s+ d),

and let t be the unit tangent vector at y(t).

Figure 3.6. Diagram of vectors associated with (s, t) ∈ Ed.

The scalar triple product [a,b, t], and the angle made by t(t) and the plane of the

encirclement triangle both give information about the local geometry of the encirclement

at (s, t). It could be useful to display a tangled curve with segments colored according to

the values of the angle and scalar triple product associated with encirclement. In Section

3.6 we propose integrating these quantities along the length of the curve to obtain a single

scalar quantification of encirclement.
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3.3 Global Geometry

Non-local structural properties of two curves can be deduced from their E-sets. Consider

a curve x that coils many times around the straight curve y. If the radius of curvature along

x is roughly constant (say equal to r), and if the center of curvature of x always is roughly

at the same point on y, then the 2r-scale E-set of x about y will contain a strand that is

flat. In contrast, if the center of curvature of x moves along y (as it does when x is the

red curve wrapping around the central axis of a candy cane), then the corresponding E-set

strand will be tilted. If x coils tightly around y (that is, if many coils occur over a short

length of y), then the minimum scale d at which this coiling shows up in the E-set of x

about y will be less than it would be if the coils in x were loose.

Figure 3.7. An E-set reflects the number of times one curve wraps around another.

Figure 3.7 shows how an E-set reflects the number of times one curve wraps around

another, and Figure 3.8 shows how an E-set reflects the quality of the wrapping. The

progression of curves in Figure 3.8 (especially from C to E) involves no cutting or major

distortions. The E-set curves are discontinuous with respect to this progression, and the

E-set corresponding to the middle configuration (D) in Figure 3.8 is empty. The curve in

this case is on the surface of a convex cylinder, (in general, if x is a curve on the surface of

a convex region in 3D, then its E-set is empty).

The discontinuity in Figure 3.8 motivates us to consider what would happen if we

extended each E-set triangle to an infinite plane. We do this in Figure 3.9, with a family
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Figure 3.8. Sequence of configurations showing how the (self) encirclement diagram shows
the difference between wrapping around and being wrapped around. The E-set for case D is
empty.

of closed curves that undergoes a transition similar to the one in Figure 3.8. Each of these

curves has the same length; the transition in Figure 3.9 involves variation in the radii of

the curve helices. The resulting point sets (called P-sets for plane) on the st torus consist

entirely of closed curves, and show interesting patterns and properties. For instance, it

appears that only the P-set curves corresponding to the generating (E-set) triangle vertices

fail to partition the torus into two distinct regions.

E-sets by construction are subsets of P-sets. Although E-sets suffer from discontinuities

and are sometimes empty, they give direct information about whether or not one segment

of curve is wrapping around another. Those P-sets we have constructed are beautiful and

intriguing, however they are bewilderingly complex, and difficult to interpret.

Although an E-set contains information about curve structure, it does not contain

enough to reconstruct a curve. Different curves exist with the same E-sets, for instance
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Figure 3.9. P-sets (thin black lines and thick red lines) and E-sets (thick red lines only) for
a curve undergoing a transition similar to the one in Figure 3.8. As in Figure 3.8, the E-set
for the middle configuration is empty.

the self E-sets for a straight line and a slightly curved line are both empty for all values of

d.

Figure 3.10. Curve B from Figure 3.8 alongside its reflection.

The sign of the encirclement is the same (negative) for each of the curve configurations in

Figure 3.8. In Figure 3.10, we show configuration B from Figure 3.8 alongside a configuration

for which the encirclement is positive. Generally, the handedness with which two curves

twirl around each other follows from the sign of the associated E-set elements. The reflection

of a curve changes only the sign of its E-set elements, and so two curves that differ only by

a spatial reflection (for instance right and left handed trefoil knots) can be distinguished.
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3.4 Encirclement Surfaces

E-sets are d-indexed cross sections of an open (often disconnected) surface embedded

in a three dimensional space with coordinates s, t, and d (see Figure 3.11). We call this

surface an Esurf. Information about encirclement and curve shape can be obtained from

the intersection of the Esurf with a plane perpendicular to the d-axis (that is, an E-set).

d 

s 

t 
x(s)

x(s+d)

x(s-d)

Figure 3.11. E-sets are sections of a surface embedded in E3. Here we show this surface for
two linked circles. The intersection of the surface with the two planes at left corresponds
to the intersection of the triangle and curve at right.

As with P-sets in the previous section, we can extend the Esurf construction by using

the E-set triangle to define an infinite plane. We call the resulting surface in E3 a Psurf.

Psurfs are very complicated and intricately folded; a Psurf d-section is a P-set such as those

pictured in Figure 3.9. We focus in this work on Esurfs, which are subsets of Psurfs (just

as E-sets are subsets of P-sets).

3.4.1 Esurf Examples

Here we consider Esurfs corresponding to a circle of radius r around a straight line a

distance l from the circle center, and transverse to the plane containing the circle, (see

Figure 3.12). We call the encirclement triangle edge from x(s − d) to x(s + d) the cutting

edge. The Esurf boundary points corresponding to intersections of the cutting edge with
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Figure 3.12. Esurfs corresponding to a straight line passing though a circle of radius r, at
different distances l from its center.

the straight line are given by r cos dr + l cos sr = 0; the boundary points corresponding to

intersections with the other two edges of the triangle are given by

tan
d

2r
=

l sin s
r

r + l cos sr
. (3.1)

In this particular case, the esurf area is given by

A = π2r2 − 4r
∫ πr

0
arctan

(
l sin s

r

r + l cos sr

)
ds. (3.2)

3.4.2 Proximity

An E-set element implies proximity between different points on a curve. In detail,

suppose (s, t) ∈ Ed. Let a = x(s − d) − x(s) and b = x(s + d) − x(s), and note that

‖a‖, ‖b‖ ≤ d. The d-scale encirclement triangle T based at x(s) is given by

T = {x(s) + αa + βb | α, β > 0 and α+ β < 1}. (3.3)
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We are assuming that (s, t) ∈ Ed, and so it follows that x(t) ∈ T and that x(t) − x(s) =

αa + βb for some α and β from (3.3). It then follows from the triangle inequality that

‖x(t)− x(s)‖ ≤ α‖a‖+ β‖b‖ ≤ (α+ β)d < d, (3.4)

as we wished to show. We suspect that inf{d | Ed 6= ∅} is related to the normal injectivity

radius ri of a curve, however we have not proven this.

3.5 Topological Properties

Information about curve topology can be obtained from the intersection T of an Esurf

with a plane perpendicular to the s-axis (see Figure 3.11). Holding s constant and varying

d corresponds to moving the encirclement triangle edge with endpoints x(s−d) and x(s+d)

through a ruled surface with boundary x. The sum of the signed intersections of this surface

with the curve y is the linking number of x and y. These intersections correspond to a

subset of the endpoints of strands in T , (like an E-set, T consists of a finite collection of

open strands). In the following two subsections, we explain this in greater detail.

3.5.1 Definition of Several Esurf Related Objects

Points on the Esurf boundary correspond to the departure of a curve from the encir-

clement triangle. Such a departure can occur via the triangle face, or via one of the three

triangle edges. A face departure for instance occurs when a loop is pulled through the tri-

angle face as illustrated in Figure 3.13. In this case, the two points where the loop pierces

the triangle move together and annihilate each other.

An edge departure can occur in one of three ways (corresponding to the three triangle

edges). Our interest is in departure via the edge from x(s − d) to x(s + d), which we

refer to as the cutting edge. With s fixed, let e(d) be the unit vector in the direction of

x(s− d)−x(s+ d), and let p be the distance in the direction of this vector from x(s− d) to

the departure point. Let s be the unit vector in the tangent plane to the spanning surface

at the piercing point in the direction of increasing d, and let t be the unit tangent vector
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Figure 3.13. Curve departure from the encirclement triangle via the triangle face.

in the direction of the piercing curve. These vectors are illustrated in Figure 3.14. Let D

(for departure) be a mapping from the Esurf boundary to {−1, 0, 1}, with −1 assigned if

the triple (s, e, t) is left handed, with +1 assigned if the triple is right handed, and with 0

assigned if the Esurf boundary point corresponds to another sort of departure (besides an

intersection of the piercing curve by the cutting edge).

Figure 3.14. Unit vectors associated with a cutting edge departure.

3.5.2 From Esurf to Linking Number

The triple (s, e, t) and the mapping D facilitate a formal expression for the linking num-

ber Lk(x,y) of two simple closed curves x and y in terms of Ed(x,y). The fixed s associated

with the d indexed family of cutting edges from the previous subsection corresponds to a

vertical slice of the Esurf in Figure 3.11. The linking number of x and y is the sum of the
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values D assigned to the endpoints of each of the line segments in this slice. We denote this

sum by B(s).

3.5.3 Further Observations

When x and y are different curves, B(s) equals Lk(x,y) for almost every s, and so the

integral
1
L

∫
B(s)ds (3.5)

equals Lk(x,y). When x = y however, B(s) varies with s, and so this integral becomes

nontrivial. We suspect (but haven’t proved) that when x = y, (3.5) equals the self-linking

number (2.5). We also suspect that the averaging accomplished by the integral corresponds

to Fuller’s observation that the writhing number is the mean of the directional writhing

numbers. In particular, if y = x + εd for a vector d in general position1 with respect to

x, then the linking number of x with respect to y equals one of the directional writhing

numbers of x. But these numbers vary dramatically with d, implying that when x −→ y,

the encirclement diagram of x with respect to y depends strongly on the way in which

this limit is taken. We suspect that the number obtained from the well defined (self)

encirclement diagram of a single strand x equals the Writhing number of x.

3.6 Reducing Encirclement Information

An E-set is a 2D capture of space curves in 3D. Reducing a 2D E-set to something

1D (i.e., a list of numbers) or even to something 0D (i.e., a single number), is useful in

applications such as curve comparison. It is a big win if we can get away with comparing

lists of numbers, or even single numbers instead of directly comparing space curves in 3D.

As an example, if curve A is a 5, curve B is a 300, and curve C is a 4, then curves A and

C can be clustered together, away from curve B. This kind of analysis is the subject of

Chapter 7.
1The vector d is in general position with respect to the curve x if d is not parallel to any tangent vector

of x.
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3.6.1 Reduction Possibilities

One way to reduce an Eset to something 1D is to first assign a scalar to each (s, t) ∈ Ed.

This can be the encirclement sign (+1 or −1), the angle at which y at t intersects the

encirclement triangle based at s, or something more complex, such as the scalar triple

product

ed(s, t) =
(

x(s− d)− x(s)
‖x(s− d)− x(s)‖

× x(s+ d)− x(s)
‖x(s+ d)− x(s)‖

)
· t(t). (3.6)

At each s there are almost always only a finite number of encirclement events; summing

the scalars associated with these events give a 1D function in s. A further reduction (to a

0D scalar) can be accomplished by integrating the 1D function over s.
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Chapter 4

Intersection with Disks

We now consider the intersections that one space curve makes with a set of disks centered

on a second space curve. The disks on the second space curve form a tube, and so the

appropriate image is of a small fishing line (the first curve) engaging with a thick fire

hose (the tube around the second curve). This relates to current work on thick knots

[31], and provides a second illustration (after triangles) of the umbrella strategy behind

all our methods. (This strategy is to consider the intersections between one curve and a

collection of manifolds associated with points on another curve.) For small d, the d scale

encirclement triangle based at x(s) is roughly orthogonal to the disk centered at x(s), and

so the intersection patterns associated with disks (this chapter) are fundamentally different

from those associated with triangles (previous chapter).

4.1 Defining a D-set

Let x be an arc-length parameterized space curve, and let u(s) be the unit tangent

vector to the curve x at the point x(s). Let the r-disk at x(s) refer to the open disk of

radius r centered at x(s), and normal to u. Let y be an arc-length parameterized space

curve as well (possibly equal to x). Define the r scale D-set of x with respect to y as

the collection of ordered pairs (s, t) for which the r-disk at x(s) intersects y at the point
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y(t). Let the sign of (s, t) be positive or negative depending on whether dy
dt · u is positive

or negative. The D-set of x with respect to y can be plotted in the st-plane as shown in

figure 4.1. As with E-sets, D-sets almost always consist of open curves (called strands) in

the st-plane.

Figure 4.1. Definition of a D-set.

4.2 Symmetry

Typical D-sets for a large convoluted space curve are given in Figure 4.2. A close

examination of the D-sets in Figure 4.2 reveals that none of the them are truly symmetric,

however, they all exhibit a curious quasi-symmetry in which each D-set consists of symmetric

clusters of small strands. Here we explore this phenomenon.

4.2.1 Straight Lines

Consider straight line segments x1 and x2 as shown in Figure 4.3. Assume the minimum

distance d between x1 and x2 is given uniquely by ‖x1(s̃)− x2(t̃)‖. It follows that the unit

tangent vectors u1 = dx1
ds and u2 = dx2

dt at x1(s̃) and x2(t̃) respectively define a plane. Let

θ ∈ (0, π2 ] be the angle between u1 and u2, (i.e., cos θ = u1 ·u2). If r < d, then r-disks with

centers at x1(s) for s ∈ (s̃− l, s̃+ l) will intersect x2 at x2(t) for t ∈ (t̃− L, t̃+ L), where

l =
√
r2 − d2

tan2 θ
, and L2 = (r2 − d2)

(
1

tan2 θ
+ 1
)
. (4.1)

32



Figure 4.2. Representative D-sets for a large convoluted space curve (the protein molecule
with PDB identifier 1K4Ta). Axes and r values are in units of Angstroms. Positive and
negative D-set elements are colored red and blue respectively.

In fact, the D-set strand corresponding to these intersections will be the open straight line

segment in the st-plane, with endpoints (s̃ − l, t̃ − L) and (s̃ + l, t̃ + L). In the same way,

we can see that the D-set strand corresponding to the intersection of the r-disks about y

with x will be the open straight line segment in the st-plane with endpoints (t̃ − l, s̃ − L)

and (t̃ + l, s̃ + L). Usually, (when θ 6= π
2 ), l < L, and so as shown in Figure 4.3, these two

lines in the st-plane are not symmetric about the diagonal s = t. However, the reflection of

one of these lines about this diagonal intersects the other at a point.
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Figure 4.3. Straight line segments, both in the horizontal plane, seen from above.

4.2.2 The General Case

Let x1 and x2 be two (not necessarily straight) space curves. Here we establish the

same quasi-symmetry as in this case where x1 and x2 are straight. Let D be the union of

r-disks with centers on an open interval of x2

D = {x2(s) | s ∈ (sa, sb)}. (4.2)

Elements in the D-set of x1 with respect to x2 correspond to the intersection of D with x2.

When r is sufficiently small, ∂D is the union of a tubular surface and the r-disks at x2(sa)

and x2(sb), see Figure 4.4. As r grows, D can develop singularities in which a single point

in D corresponds to the r-disks at multiple points along x2.

Figure 4.4. Singularities arise in the tube D associated with a space curve as the tube radius
r increases. Recall (see 2.2) that the curve global injectivity radius ri is the largest radius
value for which D is singularity free.

Theorem: If the region D centered about x1 on the arc-length interval (sa, sb) contains

the open segment {x2(t) | t ∈ (ta, tb)} of x2, and if x2(ta) and x2(tb) belong to the tubular
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portion of ∂D, then there exists a t ∈ (ta, tb) and an s ∈ (sa, sb) such that the r-disk centered

at x2(t) contains x1(s).

Proof: Consider the function d : (ta, tb) −→ (0, r) which gives the distance from x2(t) to the

segment {x1(s) | s ∈ (sa, sb)}. Both d(ta) and d(tb) equal r, and so there exists a t̃ ∈ (ta, tb)

at which d is minimized. Let s̃ be a value for which d(t̃) = ‖x1(s̃) − x2(t̃)‖. Assuming

differentiability, we note that the unit tangent vector at x2(t̃) is orthogonal to x1(s̃)−x2(t̃),

and so x1(s̃) is within the normal plane to x2 at x2(t̃). But ‖x1(s̃)− x2(t̃)‖ < r, and so in

fact, x1(s̃) is in the r-disk centered at x2(t̃).�

By continuity, s and t from the theorem almost always belong to open subintervals

of (sa, sb) and (ta, tb) respectively, which are subsets of the projection of a strand in the

st-plane onto the s and t axes. It therefore follows as a corollary that every open strand in

the st-plane has a reflection about the main diagonal which intersects another open strand

in the st-plane.

Figure 4.5. Given the D-set strand S1, there exists a strand S2 that intersects the reflection
of S1 about the main diagonal.

4.2.3 Breakdown of Quasi-Symmetry

In certain pathological cases, the hypotheses of the previous theorem are not satisfied,

and D-set strands exist which do not have reflections about the main diagonal that intersect
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other strands. An example of this is given in Figure 4.6, in which an intersection asymmetry

occurs between curves x and y. The curve y is within the r-tube about x, but the r-tube

about y never intersects x.

x

y

x

y

Figure 4.6. At left are two curves for which the quasi-symmetry with disks breaks down.
As shown at right, this pathology vanishes when a sphere (instead of a disk) is associated
with each point on the curves; a radius r sphere centered at x(s) contains y(t) iff a radius
r sphere centered at y(t) contains x(s).

From the previous theorem, we know that this type of asymmetry can only occur at

the end point of one of the curves involved (and hence it never occurs for closed curves).

Although we don’t prove this, the left image in Figure 4.6 suggests that the length of curve

x (z) over which this asymmetry can occur is bounded above by r (πr2 ); to see this, let

C and D coincide, and let z trace out a quarter circle from A to B. Thus D-set strands

enjoy the quasi-symmetry property, except possibly those associated with the curve ends.

These end strands will have lengths on the order of r, and will have ends that contact the

(rectangular) boundary of the D-set.

As the disk radius increases, the D-set for a pair of space curves gains elements. When

x and y are the same closed curve, this growth continues until the D-set strands (now living

on a torus) connect with one another so that every strand is a closed loop. As with the
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similar construction in Figure 3.9, the totality of these strands is rich with structure, but

bewilderingly complex; we leave an investigation of these objects to future workers.

4.3 Prototypical D-set Patterns

The D-set shown in Figure 4.2 is rich with patterns that correspond to structures in

the generating curve (which happens to be the backbone of a protein molecule). Generally,

different curve structures such as parallel segments of curve and helices give rise to distinctive

D-set markings. The number and type of these structures can be immediately determined

from the D-set. As shown in Figure 4.7, parallel segments generate a criss-cross pattern in

the D-set. In fact, the width of the sheet of parallel segments, as well as the twist of the

sheet about its axis can be determined from the D-set pattern. Also shown in Figure 4.7 is

a helix and its corresponding D-set. The larger arrangement of helices generates large scale

criss-cross patterns just like sheets of individual strands. Additional curve structures and

their corresponding D-set patterns are shown in Figure 4.8.

4.4 Relation to Contact Maps

Contact maps are regions in the st-plane, consisting of points (s, t) for which ‖x(s) −

x(t)‖ < ε, for some ε > 0. An ε contact map is a superset of a radius ε D-set. The two are

related by a transition in which the (asymmetric) D-set strands increase in thickness so as

to fill out the contact map area in the st-plane. The asymmetry of a D-set endows it with

more information than the corresponding contact map.
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Figure 4.7. Curve structures and their corresponding D-set patterns.
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Figure 4.8. Additional D-set patterns; different curves leave signature D-set markings.
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Chapter 5

Distance

Here we consider the (2D) set of distances between pairs of points on a space curve.

Patterns in this set correspond to different curve structures; for instance, the distribution

of these distances can be used as a shape identifier, (Funkhouser [30]).

One of our initial motivating questions was whether or not a curve can be constructed

(modulo a translation and rotation) given only the distances between its points. We answer

in the affirmative, and provide an algorithm for doing this section 5.2.

5.1 Distance Surfaces and Matrices

We define the distance surface associated with a space curve x to be the mapping given

by D(s, t) = ‖x(s)− x(t)‖. The distances between the nodes (xi) of a discrete space curve

comprise a distance matrix, with entries Dij = ‖xi − xj‖. Distance surfaces are pictured in

Figure 5.1.

As discussed in Chapter 4, we define an ε contact map of a curve x to be the collection

of points (s, t) in the st-plane for which ‖x(s) − x(t)‖ < ε. Also, we define Nε to be the

number of unconnected regions in an ε contact map.
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Figure 5.1. Distance surfaces for a loose knot (left), and for a tighter knot (right). The
knoted curves in both cases have the same lengths. At right, the curve is largely straight,
with a small knot at its midsection. In this case the distance surface consists of large planar
sheets (the distance surface of a straight line is a single planar sheet).

5.2 Building Curves from Distance Surfaces

It is possible to reconstruct a curve in En given only the set of distances between points

on the curve. One way to do this is to choose n + 1 points on the curve corresponding

to the vertices of an n-dimensional tetrahedron, and then to find the positions of other

points on the curve with respect to this tetrahedron. The same task is accomplished using

a procedure known as Multi-Dimensional Scaling, that we discuss in Appendix A.

5.2.1 Tetrahedra

The n + 1 points x0, . . . ,xn are the vertices of an n-dimensional tetrahedron iff the

n edges ei = xi − x0 (i = 1, 2, . . . , n) are linearly independent. Supposing that such a

tetrahedron is given in Rn, we note that Gram-Schmidt can be used to construct an ortho-
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normal basis {Ei} from the edges {ei}. The two sets of vectors are related by

e1

e2

...

en


=



α11

α21 α22

...
...

. . .

αn1 αn2 . . . αnn





E1

E2

...

En


and



E1

E2

...

En


=



β11

β21 β22

...
...

. . .

βn1 βn2 . . . βnn





e1

e2

...

en


(5.1)

where to find the αij ’s and the Ei’s, we first compute α11 = ‖e1‖ and E1 = α−1
11 e1. Once

E1 to Ek−1 and the first k − 1 rows of [αij ] are known, we compute αki = ek · Ei for

i = 1, . . . , k − 1, and use

αkkEk = ek − (αk1E1 + · · ·+ αk k−1Ek−1) (5.2)

to compute αkk and Ek. To compute the βij ’s, we first note that β11 = α−1
11 . Next, given

the first k − 1 rows of [βij ], we obtain the kth row from

[βk1 βk2 . . . βk k−1] = −α−1
kk

[
αk1 . . . αk k−1

]


β11

β21 β22

...
...

. . .

βk−1 1 βk−1 2 . . . βk−1 k−1


(5.3)

and from βkk = α−1
kk .

Our interest is in placing n+ 1 points xi (i = 0, 1, . . . , n) in Rn so that ‖xi − xj‖ = dij ,

where the 1
2(n+ 1)(n+ 2) positive numbers dij are given. The placement of these points is

unique aside from an isometry. Let {Ei} be an ortho-normal basis for Rn. Put x0 at the

origin, and x1 at ±d10E1, (so that α11 = ±d10), where it is our choice whether to use plus

or minus. Now suppose the first k − 1 rows of [αij ] have been determined. The coefficients

αki in the next row can be calculated for successive values of i from 1 to k − 1 with

αki =
1

2αii

(
d2
k0 − d2

ki + (α2
i1 + α2

i2 + · · ·+ α2
ii)− 2(αk1αi1 + αk2αi2 + · · ·+ αk i−1αi i−1)

)
(5.4)

Then, αkk is given by

αkk = ±
√
d2
k0 − (α2

k1 + α2
k2 + · · ·+ α2

k k−1) (5.5)

where again it is our choice whether to use plus or minus.
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5.2.2 Curve Content

The construction technique from the previous section relies on the fact that if four points

from a curve in E3 can be chosen so that they comprise the vertices of a tetrahedron with

nonzero volume, then this tetrahedron can be used to exactly locate every other point on the

curve. The corresponding fact for curves in E2 involves a triangle, and in general, for curves

in EN it involves a N -dimensional tetrahedron (often called a simplex). Sometimes however,

a curve sits in EN in such a way that no collection of its points comprise the vertices of an

N -dimensional tetrahedron. In these cases we say that a curve has diminished content.

In general, the content of a curve is the dimension of the space spanned by the vectors

between all pairs of curve points. If a curve lies entirely within a 2D plane, we say that it

has content 2; if it lies on a line, we say that it has content 1. The content of a curve can

be determined by picking curve points one after another so that they comprise the vertices

of a tetrahedron with increasing dimension. If k is the greatest number of these points that

can be chosen, then the curve has content k, and it exists in a k-dimensional slice of its

original space.

Every curve has a unique distance surface, but not the other way around. A distance

surface only corresponds to a curve that is unique modulo a translation and isometry. This

corresponds to the fact that choices must be made in the construction of a curve from its

distance surface.
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Chapter 6

Using I-sets to Compare Space

Curves

Space curves with similar shapes have self I-sets that look the same. When subsections of

two space curves are similar, the I-subsets corresponding to these sections also are similar. In

this chapter, we introduce a (quasi) metric on space curves that is based on a comparison

of I-subsets. The metric depends on the manifold M used to generate the I-sets (e.g.,

triangles versus disks), so that two space curves that are different in one sense may be

similar in another. Background material on metrics can be found in Munkres [28].

Figure 6.1. How different are curves A and B? We use I-sets to establish a notion of
qualitative distance between space curves, (this is an abstraction of the usual notion of
physical distance).

Our metric is motivated by applications across a range of fields. In structural bioinfor-

matics, it is important to be able to compare the shapes of protein molecules, which are
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chains of atoms coiled into complicated space curves. Additional families of space curves

that could be compared include other biological fibers such as plant tendrils, as well as

solutions of the dynamical system ẋ = f(x).

We find that for protein molecules, an I-set based shape comparison code is fast, ac-

curate, and competitive with comparable state-of-the-art schemes used in structural bioin-

formatics. Moving from a space curve (3D) to an I-set (2D) reduces the dimension of the

comparison problem, and so increases the speed of solution. In certain instances, a further

reduction (to 1D) is possible, with massive computational savings.

6.1 Comparison Paradigms

Suppose that space curves A and B match reasonably well (but not exactly) over their

entire lengths, and that a third space curve C has one segment that is identical to a segment

of A, but also other segments which do not have any resemblance at all to any part of A.

How should the distance between A and B compare to the distance between A and C?

A fourth space curve D may have several segments that match segments of A, but these

segments may be ordered in D differently from the order of the corresponding segments in

A. These possibilities are shown in Figure 6.2.

Figure 6.2. Symbolic representation of ways in which space curves A, B, C, and D may
be similar. The four glyphs on each curve represent segments of curve with a particular
structure.

Several decisions need to be made when comparing two space curves. Should a matching

that involves numerous small gaps count for less than a matching which involves fewer but

larger gaps? What if matching curve segments have to be translated and rotated different
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amounts in E3 to simultaneously coincide? There are many different ways in which two space

curves can be similar, and thus many different possible metrics on the set of space curves.

The appropriate metric to use depends on the problem being considered. The application

guiding us as we develop our metric is the comparison of space curves associated with

protein molecules.

6.2 Existing Comparison Schemes

Shape comparison and pattern recognition are fundamental tasks which have given rise

to a variety of ingenious schemes [25, 30, 36]. There are many different ways to assign a

distance to two space curves based on shape; here we mention only a few of them.

In the context of comparing protein molecules, one of the most popular algorithms for

assigning an overall distance to two space curves is DALI [18], which uses Monte Carlo

methods to match sub-matrices of curve distance matrices.

If a correspondence has been established between the nodes xi and yi of two space

curves, then the distance between the two curves can be taken to be the minimum value of∑
‖xi − (v + Tyi)‖ over all translations v and rotations T. Finding v and T is known as

the Procrustes problem, and has several well known fast solutions [35].

One of the most ingenious methods we have seen for comparing space curves involves

Voroni cells [4]. Given a space curve as a collection of n nodes xi, the method begins with

a partition of the ambient space into n Voroni cells (one containing each node). Let uk

be the number of faces on the Voroni cell that contains node xk. This number reflects the

degree to which node xk is surrounded by other nodes. Using this construction, the original

3D space curve is associated with a 1D list of scalars (uk). Two space curves are compared

by comparing these corresponding lists. Because the lists are 1D, this comparison can be

accomplished with a (fast) dynamic programming algorithm, such as the one in Appendix

C.
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6.3 Our Scheme

In our scheme, we chop space curves A and B into small segments ai and bj , and

compare all possible pairs of I-subsets for these segments. Essentially, a non-repeating list

of segment pairs (ai, bj) is chosen so that the sum of the associated distances is a minimum.

A flowchart of this scheme is given in Figure 6.8. The idea for non-pathological cases is

that agreement in shape on a local scale (in the sense of which ever I-set we happen to be

using) is used to string together the curve segments ai and bj into larger pieces that have

the same shape. Because the method is based on comparing small adjacent segments, it

is insensitive to low frequency differences between two curves, in which small coilings may

agree, but the larger structures drift apart, (i.e., it is a high pass filter for shape.)

6.4 Parameterization Invariance

The I-set of a space curve is affected by the way in which the curve is parameterized.

Our interest is in constructing a distance function for space curves that is insensitive to this.

In general, a shift (s 7→ s+ ∆) in the arc-length parameterization of curves x and y causes

the I-set of curve x with respect to curve y to translate in the st-plane. In the case of self

I-sets, this translation is only in one direction (that of the main diagonal s = t). A change

in the sign of an arc-length parameter (s 7→ −s) corresponds to a change in the direction

associated with a space curve. This causes the associated I-set to undergo two reflections

(i.e., a 180◦ rotation) in the st-plane.

In Section 6.5.1 and B we present two I-set metrics, and different methods for making

them insensitive to translation. Insensitivity to reflection can be accomplished by checking

the small finite number of possible cases. The protein molecules that we investigate in

Chapter 7 have directed backbone curves, and so we don’t bother correcting for reflections.

(Also, D can be evaluated separately for the positive and negative parts of two I-sets,

however we don’t persue this.)
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6.5 I-set Metrics

We now provide two metrics for quantifying the difference between I-sets. Later in this

chapter, we apply these to I-subsets (note that an I-subset is itself an I-set) corresponding

to segments of two curves, and then bootstrap our way to a single distance value, together

with alignment information for the two curves. We are looking now for local matches; we

want to know if the curve x in a small but not too small neighborhood of x(s) has the same

shape as the curve y in a neighborhood of y(t).
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Figure 6.3. Encirclement subsets of backbone curves for protein molecules with PDB iden-
tifiers 1ENH and 1CTF, (these images are magnifications of the boxed regions in Figure
7.3.) The similarity in these E-sets corresponds to a similarity between the associated pro-
tein substructures. The axes indicate position (in Angstroms) along the protein backbone
curves.

6.5.1 Metric A

Let A and B be two I-sets, and let fB : A −→ R map a ∈ A to

fB(a) = inf{‖a− b‖ | b ∈ B}. (6.1)
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This function tells how far a single element of A is from all the elements of B. A distance

function D(A,B) is obtained by integrating fB(a) along the strands comprising A and by

integrating fA(b) along the strands comprising B, with respect to arc-length parameters

along these strands:

D(A,B) =
1

LA + LB

(∫
A
fB(a(τ)) dτ +

∫
B
fA(b(τ)) dτ

)
. (6.2)

The result is normalized by LA +LB, where LA and LB are the total lengths of the strands

in A and B respectively. D(A,B) partitions the strands in A and B into (vanishingly)

small segments of equal length. Each segment in A (B) is assigned the distance from that

segment to the nearest element in B (A). The function D(A,B) returns the mean of these

distances.

If A and B are unequal, then D(A,B) > 0. For instance, if A consists of the vertical

line lA from (0,−1) to (0, 1), and if B consists of the horizontal line lB from (−1, 0) to (1, 0),

then D(A,B) = 1/2. As A and B get closer together, for instance as lA rotates about the

origin and becomes increasingly aligned with lB, D(A,B) gets smaller. If A and B are equal

then D(A,B) = 0, and conversely.

If the I-sets A and B are contained in disks in the st-plane, then dmin < D(A,B) < dmax,

where dmin is the diameter of the largest circle that can pass between the disks, and where

dmax is the diameter of the smallest circle that contains the disks.

Unfortunately, although D is positive definite (and trivially symmetric), it is not a true

metric because it sometimes violates the triangle inequality. For instance, when A, B,

and C are I-sets consisting of the open intervals on R given by (−1, 0), (−1, 1), and (0, 1)

respectively, D(A,B) +D(B,C) = 1/3, and D(A,C) = 1/2. It is instead a quasi-metric.

6.5.2 Minimizing the Metric A over Translations

Here we discuss finding the minimum value of D(A,B + x), where B + x stands for

a translation (but no rotation) of B in the st-plane. We think of the corresponding parts

of A and B + x as connected by springs. This motivates an ODE for x(γ) which causes
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D(A,B + x) to approach a local minimum as γ increases. In particular, let

dx
dt

=
1

LA + LB

(∫
A

gB(a(τ))dτ −
∫
B

gA(b(τ))dτ
)
, (6.3)

where gA : B −→ R2 such that b ∈ B is mapped to the average of the vectors from b to the

points a ∈ A for which ‖b−a‖ equals fA(b). The flow associated with this ODE has basins

of attraction with boundaries given by the ridge lines of the function D(A,B + x) of x. A

strategy for exploring all basins would be to estimate the minimum size of the basins based

on properties of A and B, and then to place a grid small enough over D ⊂ R2 (where D

corresponds to x for which A∩ (B + x) 6= ∅) to ensure that there is at least one trajectory

in every basin.
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Figure 6.4. Algorithm translates two E-sets (from Figure 6.3) so that the distanceD between
them is minimized. We start the algorithm with the E-sets centered about the origin. The
D values asymptote to approximately 3.72 Å.

It is only appropriate to minimize over arbitrary I-set translations if each of the two

I-sets being compared is for two different curves, (i.e., neither I-set is a self I-set). If A is

the I-set for curve xA with respect to curve yA, and if B is the I-set for curve xB with

respect to curve yB, then a match between A and B indicates that xA is to yA as xB

is to yB. As mentioned in 6.4, a shift in the arc-length parameterizations of these four

curves can cause A and B to translate arbitrarily in the st-plane. Making the distance

between A and B invariant to these shifts involves minimizing over arbitrary translations.

Sign changes in the curve parameterizations cause the corresponding I-sets to reflect in the

st-plane, further complicating the problem. Four curves have a total of 24 = 16 reflection
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Figure 6.5. It seems that the algorithm for minimizing D for E-sets over all translations
always reduces the value of D with each iteration (we have not proven this yet). In practice,
we run the algorithm for 10 iterations. This data is from the E-sets in Figure 6.4.

possibilities, and so in general, we would have to minimize over arbitrary translations for

each of these separately, and then take the minimum of these 16 minima.

The situation is considerably simpler in the case that interests us, in which each I-set

is a self I-set. In this case, shifts in the arc-length parameterization of a curve translate its

self I-set along the main diagonal of the st-plane. With e a unit vector in this direction,

our search is for an optimal translation of the form γe. An ODE which provides γ follows

from the projection of (6.3) in the direction of e. In particular,

dγ

dt
=

1
LA + LB

(∫
A

gB(a(τ))dτ −
∫
B

gA(b(τ))dτ
)
· e. (6.4)

A change in the sign of an arc-length parameter causes the associated I-set to undergo two

reflections, equivalent to a 180◦ rotation in the st-plane. The number of possibilities is only

two.

6.5.3 Metric B

A natural metric for regions A and B in the plane is given by

D(A,B) =
Area(A ∪B)
Area(A ∩B)

− 1, (6.5)
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which returns a zero if and only if A = B, and which is greater than zero otherwise. If we

wish to detect when a small region exactly matches some piece of a larger region, we might

consider using

D(A,B) =
min{Area(A),Area(B)}

Area(A ∩B)
− 1, (6.6)

which is zero if A ⊂ B or B ⊂ A. Metrics (6.5) and (6.6) apply to I-sets by way of the

construction shown in Figure 6.6.

Figure 6.6. Turning curves in the st-plane into matrices.

In detail, let (s0, s1, . . . , sm) and (t0, t1, . . . , tn) be equally spaced points on the intervals

[s0, sm] and [t0, tn] respectively, (where all I-set points have a first element on the s-interval,

and a second element on the t-interval). Let the (i, j) entry of the n ×m matrix M equal

1 if any I-set element is in the box [sj−1, sj) × [ti−1, ti), and let it equal 0 otherwise. This

construction turns a collection of curves in the plane into a region with area. This region

can be compared to other such regions using (6.5) and (6.6). In practice, we store these

regions as large sparse logical arrays which take up very little space and are easy to work

with.

As with metric A, we can introduce a fine tuning alignment of (sparse matrices) A and

B so as to obtain the minimum possible distance between them. With self I-sets this is a

matter of shifting the indicies (row and column) of one of the matrices by the same integer

amount. We start so that the mass centers of the matrices coincide, and then search some

distance in both directions away from this.
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6.6 Scaled Distance

The distance D between two I-sets gives either the average length of the line connecting

an element from one I-set to the nearest element of the other I-set (in the case of metric

A), or a ratio of overlapping areas (in the case of metric B). We wish to reduce the distance

between two I-sets that occupy a large region in the st-plane; the larger this region, the

greater the potential for I-set mismatch with respect to metrics A and B, and thus the greater

the similarity between I-sets that don’t mismatch. A scaled distance Ds that accomplishes

this is given by

Ds(A,B) =
D(A,B)
box(A ∪B)

(6.7)

where box(A ∪ B) reflects the size of the smallest rectangle in the st-plane that contains

A ∪ B. In the case of metric A, box(A ∪ B) is the length of the diagonal of the smallest

rectangle that contains A∪B. In the case of metric B, box(A∪B) is the area of the smallest

rectangle that contains A ∪B, which is bounded by gridlines of the partition used to define

D.

Consider the upper left and lower right images in Figure 6.7. There is a stronger match

between the black and gray I-sets in the upper left case than in the lower right case. This

is reflected in the scaled distance values Ds.

6.7 Overall Alignment

Here we construct an overall match between two curves by using I-subsets to match

curve subsections. By matching I-subsets that contain enough information about structural

correspondance on a scale that is small but not too small, we obtain an overall match of

the two structures. Our measure of the global match between two curves tolerates drift in

the relative position of curve pieces that are far apart with respect to arc-length.

At this point we have a matrix of pairwise comparison scores. Each entry reflects the

similarity between two segments of protein. From this matrix we construct an overall pairing

for two proteins. Parts that match are paired, and parts that do not match are left free.
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Figure 6.7. Examples of distance values D and scaled distance values Ds for different I-set
pairs.

6.7.1 Sequential Alignment

Sequential alignment is discussed in Appendix C. In general, if the direction in which

two curves match is not known ahead of time, sequential alignment would be performed on

A and B, and then on A and B̃, where B̃ is B taken in the reverse direction. Sequential

alignment is what we seek in our work with protein molecules, (protein molecules are rarely

aligned non-sequentially). The assumption of sequential alignment greatly reduces the cost

of computing the alignment.
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Figure 6.8. Flow chart for comparing two space curves.

Figure 6.9. Distance values from the end matrix in Figure 6.8 are weights in a path opti-
mization scheme.

6.7.2 Non-Sequential Alignment

Non-sequential alignment is expensive, however it accommodates a wider variety of pos-

sibilities than sequential alignment. For instance it can accommodate reversals in direction,

as in [18]. In the case of two curves that are sequentially aligned, this matching gives
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the same results as the sequential alignment matching. The Kuhn-Munkres algorithm (see

Appendix B) solves for this kind of alignment. We suggest the following overall strategy:

1. compute two matrices of pairwise comparison scores, M(A,B) and M(A, B̃). Then,

put the element-wise minima of these two matrices into a single matrix called M .

2. remove rows and columns from M in which all entries are larger than a threshold

value.

3. run the Kuhn-Munkres algorithm on M .

4. define matching segments be continuous diagonal sets of (two or more) elements in

M . two such sets in M with different orientations should have this reflected in their

individual elements. one set should be for A and B, while the other should be for A

and B̃. this alternation should hold for all matches.

6.8 Overall Distance

An alignment between curves A and B establishes a correspondence between points on

A and points on B. Every point of A (B) is connected either to nothing, or to a unique point

on B (A). Given an alignment between two curves, there are several associated notions of

Figure 6.10. This diagram represents curves A and B in the case of a sequential alignment.
The curves are uncoiled, and gaps are introduced to illustrate the alignment. l(A∪B) and
l(A ∩B) are measures of arc-length along the curves.

overall distance. The most obvious of these is simply the score SA associated with the
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alignment. If we wish to measure alignment quality per overall length, we could use

D(A,B) =
SA

l(A ∪B)
, or D(A,B) =

SA
lA + lB

, (6.8)

where SA is the score associated with the alignment, where lA and lB are the lengths

associated with A and B respectively, and where l(A ∪ B) is the overall alignment length,

as shown in Figure 6.10. If we wish to ignore pieces of curve that are unmatched in the

alignment, we could evaluate the score associated with matched segments divided by the

segment lengths. Finally, if we wish to measure the proportion of curve length which is

involved in the alignment, we could use

D(A,B) =
l(A ∪B)
l(A ∩B)

− 1 =
lg

l(A ∩B)
, (6.9)

where l(A∩B) is the net overlap length (see Figure 6.10), and where lg = l(A∪B)−l(A∩B)

is the gap length associated with the alignment.

These different notions of distance (as well as many others) give different relative dis-

tances between curves. The appropriate distance function to use depends on what needs to

be measured. In our work with proteins (in Chapter 7), we wish simply to verify that I-sets

enable curves in different SCOP superfamilies to be distinguished. For this purpose we use

(6.8b).
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Chapter 7

Protein Molecules

As a real world application of our novel shape analysis methods, we now use I-sets to

distinguish between different protein molecules. Protein molecules are the building blocks

of life, performing myriad functions in living organisms. Understanding these molecules

is a fundamental challenge which underpins work in medicine, such as the development

of new drugs. The first protein molecule to have its structure solved was Sperm Whale

myoglobin, in 1953. Since then, thousands of solved protein structures have been added

to an online repository called the Protein Data Bank (PDB). Being able to navigate the

40,000 structures now residing in the PDB is essential to further developments in the field.

For instance, the process of solving for new protein shapes has come to rely heavily on

comparison of an emerging structure with existing solved structures.

Navigating a set of objects depends on having a meaningful notion of distance. This

comes from a metric, which tells which objects are close together, and which objects are far

apart. It is often useful to have more than one metric on the same set of objects; two things

may be close together in one sense, and far apart in another. With respect to a particular

metric, objects can be collected into groups and therefore classified, [32, 38].

A multitude of classification schemes deepens our understanding of a set of objects.

There are three major schemes for classifying proteins by their structure. These differ mainly

in their level of automation (especially for distinguishing different protein domains). The
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fully automated scheme is FSSP (Families of Structurally Similar Proteins) based on DALI,

the semi-automated scheme is CATH, and the largely manual scheme is SCOP (Structural

Classification of Proteins). The references in [11] include papers on these schemes, as well

as on many additional innovative approaches to protein classification.

In this chapter we show that protein structures give rise to different I-set patterns. We

use the comparison algorithm from Chapter 6 to find distances between protein molecules,

and thus to classify them into groups. The protein structure space is filled with different

patterns and possible methods of grouping. Different organizational schemes are appropriate

for accomplishing different tasks. Given a new protein structure, we wish to quickly find

existing proteins that are structurally similar.

7.1 Protein Structure

Protein molecules consist of chains of atoms coiled into compact hierarchically struc-

tured curves in E3. The primary structure of a protein refers to the order along the protein

chain of groups of atoms called residues. Each residue has the following form

C −N − Cα (7.1)

with a distinguishing appendage linked to N . There are 20 naturally occuring residues, and

like letters in a sentence, their order along a protein chain determines the shape and function

of the protein molecule. The local structural patterns that arise within the protein are

called secondary structures. These include helices (called α-helices), as well as parallel (and

anti-parallel) portions of chain that form what are called β-sheets. Additional secondary

structures include turns and loops. So called super-secondary structures consist of common

combinations of α-helices and β-sheets. These secondary structures in turn are arranged

in space into tertiary structures. Frequently, tertiary structures combine to form even

bigger complexes, called quatenary structures. Proteins with quatenary structure are often

modular, with the same subunits repeated multiple times.

This hierarchy in proteins is analogous to the levels of structure in written text. Just as
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Figure 7.1. Proteins exhibit a hiearchy of organizational levels.

the meaning of a sentence or paragraph can often be deciphered even if numerous letters are

changed, the structure and thus function of a protein molecule is (usually) robust to changes

in individual residues. Furthermore, just as there are often many ways to say the same thing

in text, there are often different residue sequences that result in the same protein struc-

ture. The rules of protein grammar and sentence construction allow protein identity to be

deciphered with only partial information. Although protein curves appear to be hopelessly

convoluted (see Figure 1.1), they are actually rich with supporting patterns. The functional

identity of a protein largely depends on its shape. Also, the same primary structure can

lead to different stable final structures (although this is rare). Further background can be

found in [24, 34].

7.2 Organizing Proteins by Shape

Patterns have emerged at all levels of the protein structure hierarchy, (see Schlick [34]).

A largely manual categorization of proteins by structure is provided by SCOP, (Structural

Classification of Proteins). The categories in this scheme are
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Class ⊃ Fold ⊃ Superfamily ⊃ Family

Protein molecules are arranged within a Family according to the species of organism they

come from. The four main classes in SCOP (Structural Classification of Protein) are

• all-α: proteins with only α-helices.

• all-β: proteins with only β-sheets.

• α/β: proteins with both α-helices and mainly parallel β-sheets, (as beta-alpha-beta

units).

• α+β: (proteins with both α-helices and mainly antiparallel β-sheets, as separate alpha

and beta domains).

7.3 Our Goal

We want to be able to tell whether or not two protein molecules belong to the same

superfamily. When comparing molecules in the same superfamily, we are careful to consider

molecules from different families, (molecules in the same family are essentially identical, and

it is no test of method quality to verify this). Our proof of concept analysis involves the

twelve molecules from the all-α class shown in Figure 7.2. Each row in the table corresponds

to a different all-α superfamily. The molecules in each row come from different families.

7.4 Recognizing Different Folds

In Figure 7.3, we show that a qualitative difference exists between I-sets for different

protein molecules, (in particular for the protein molecules with PDB identifiers 1ENH,

1CTF, and 1ABO). The proteins with PDB entries 1ENH and 1CTF both contain three

α-helices, while the protein with PDB entry 1ABO contains none. The similarities and

differences in these curve structures are reflected in their corresponding (d = 25Å) E-sets;

the E-sets for these molecules at other scales also reflect these similarities and differences.
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Superfamily:
Globin-like

5MBA 1KR7 1DLW

Superfamily:
Six-hairpin glycosidases

1CEM 1FP3 1VD5

Superfamily:
UBA-like

1F4I 1OAI 1MN3

Superfamily:
S15/NS1 RNA-binding domain

1AIL 1A32 1D2D

Figure 7.2. Twelve protein molecules from the all-α class. Each row contains proteins from
the same superfamily; no two proteins are from the same family.

Because different I-sets correspond to different protein structures, we can use them to

navigate the space of protein structures, using the notion of distance developed in chapter 6.

The algorithm that we develop is like DALI, but with a similarity score based on comparing

intersection subsets rather than distance matrices. The data structure associated with each

protein molecule in our scheme is a sparse n×n logical array, where n is the number of

residues in the protein backbone chain. As a sparse array, the actual storage size is far less

than n2. These small easily manipulated data structures compare quite favorably to the
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Figure 7.3. Self encirclement sets for three different proteins, with d = 25Å. The axes
indicate position (in Angstroms) along the protein backbone. There is an especially good
correspondence between certain E-subsets of the proteins with PDB entries 1ENH and
1CTF, such as those boxed in gray. These particular two subsets are compared with
greater magnification in Figure 6.3. (Protein images generated with KiNG Version 1.39, see
http://kinemage.biochem.duke.edu/)

much larger distance matrices used in DALI. Given a similarity score, it is straightforward

to organize protein molecules into trees, clusters, and other structural families [18, 20, 19].
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7.5 Protein Alignment

The same range of possibilities exists for comparing protein molecules that exists for

comparing space curves in general, (discussed in Section 6.1). Corresponding protein seg-

ments can be at different locations along their respective chains, and the order of these

segments along their respective chains can differ. Finding which segments of one protein

best correspond to which segments of another involves sifting through a huge number of

possible pairings. One of the most successful algorithms for doing this is DALI [18], which

uses a Monte Carlo approach based on comparing the distances between curve nodes to

slowly assemble a collection of pairings for which an overall similarity score is high.

Although an I-set based comparison scheme using the Khun-Munkres algorithm (see

6.7.2) can deal with the difficult case of non-sequential alignment, we explore a cheaper

scheme which makes use of the fact that most similar protein molecules have corresponding

pieces that are in the same order and direction. This is referred to as sequential alignment

(see Appendix C).

Figure 7.4. Structurally similar proteins usually have corresponding pieces that are in the
same order and direction.

7.6 Protein Comparison: Practical Details

We align and compute the distance between protein molecules by following the procedure

outlined in Chapter 6. Here we provide detail on the steps involved in this process. We start

by downloading the protein PDB files from www.pdb.org. Next, we read atom coordinates

into a 3×N double array in Matlab, (each column of the array gives the position of a

backbone chain atom in E3). An I-set is then computed from this array.
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Figure 7.5. E-sets for three of the molecules from Section 7.2, with d = 25Å. Axes are in
units of residues.

Figure 7.6. D-sets for three of the molecules from Section 7.2, with r = 15Å. Axes are in
units of residues.

Although an I-set is a collection of curves in the st-plane (as in Figure 7.3), we find

that protein I-sets consist of so many distinct curves that they appear more as sprinklings

of points. On the scale of the whole set, the individual strands are less important than

the patterns of these point clusters. When constructing an I-set for a curve, we therefor

ignore the fine features of individual strands, and store the I-set as a sparse logical array

(as discussed in Section 6.6). Each row and column of the array corresponds to a protein

residue (i.e., three atoms along the backbone chain). Representative E-sets and D-sets for

three protein molecules from Section 7.2 are shown in Figures 7.5 and 7.6 respectively.

In our investigations, I-subsets are 20×20 subarrays along the main diagonal of the I-set
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Figure 7.7. Alignments and distances for the molecules from Figures 7.5 and 7.6. (These
molecules are from Table 1.

array. Using (6.5), we compute the distances between all possible pairs of I-subsets of the

two proteins. Then, dynamic programing with a gap penalty of 10 (see Appendix C) is

used to produce an alignment for the two proteins. An overall score is then computed using

(6.8a). Representative results are given in Figure 7.7.

7.7 Overall Distribution of Molecules

We now run proof-of-concept computations on the selection of twelve all-α molecules

shown in Table 1. An alignment and overall distance is computed for every pair of molecules.

The molecules are then visualized using multidimensional scaling [5] as abstract points in

the plane (see Appendix A). These abstract points are far apart or close together depending

on the I-set based distance between the corresponding molecules.

With both the E-set and D-set data, (Figures 7.8 and 7.9 respectively), we find that

molecules in the same SCOP superfamilies are generally clumped together, away from

molecules from other superfamilies. Different distance functions (i.e., E-sets versus D-sets)

give rise to different clusterings of the protein molecules.
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Figure 7.8. E-set comparison. All against all table of E-set based distances for the proteins
from Table 1. Protein molecules are listed at center in the order in which they correspond
to the rows (and columns) in the table at left. Next to each protein is a glyph; proteins
in the same superfamily have the same glyph. An MDS plot for this data is shown on the
right.

Figure 7.9. D-set comparison. All against all table of D-set based distances for the proteins
from Table 1. As in Figure 7.8, protein molecules are listed at center in the order in which
they correspond to the rows (and columns) in the table at left. Next to each protein is a
glyph; proteins in the same superfamily have the same glyph. An MDS plot for this data
is shown on the right.

D-sets are richer with data than E-sets, however this extra information does not seem

necessary for the task of distinguishing between different protein molecules.
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7.7.1 Shape Distribution Results

Here we compare the collection of molecules in Table 1 using Funckhouser’s method

of shape distributions. Distributions for three of the proteins from Table 1 are shown in

Figure 7.10.

Figure 7.10. Representative probability distributions of pairwise distances (over all pairs of
backbone atoms) for the protein molecules with PDB identifiers 5MBA, 1KR7, and 1AIL.
The x-axis in each case is in Angstroms.

We use 〈f, g〉 =
∫
f g ds as an inner product between shape distributions f and g. The

corresponding metric on shape distributions is given by ‖f−g‖ where ‖f−g‖2 = 〈f−g, f−g〉.

In Figure 7.11 we show the collection of pairwise distances between the shape distributions

of the 12 molecules in Table 1. As in Figures 7.8 and 7.9, we use MDS to transform these

distances into a collection of 12 abstract points in the plane. The grouping of these points is

mildly consistent with the corresponding SCOP superfamilies, however the effect is weaker

than for the corresponding E-set and D-set analyses shown in Figures 7.8 and 7.9. This

is likely due to the fact that E-sets and D-sets contain more structural information than

histograms.

7.8 A Faster Implementation

Instead of comparing 2D curve I-sets, it is possible to compare 1D objects constructed

from these I-sets. A 1D object associated with the n nodes of a discrete space curve for
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Figure 7.11. All against all table of shape distribution based distances for the proteins
from Table 1 together with a corresponding MDS plot. The distances and MDS data are
displayed in the same way as in Figures 7.8 and 7.9.

instance is given by a 1 × n array; each node of a space curve can be assigned a number

related to the intersections associated with the manifold based at the node. For instance,

each node of a space curve can be assigned an integer equal to the number of times the

manifold based at this node is intersected.

Comparing 1D vectors is cheaper than comparing 2D I-sets; in an ongoing project with

workers in bioinformatics, a scheme based on comparing 1D arrays constructed from I-

sets has been generated that performs with a speed and accuracy on the order of the best

schemes from that field. In fact, the best scheme is one based on Voroni cells, that we

describe in Section 6.2, and that is remarkably similar to our scheme.

7.9 Lack of Encirclement

Protein E-sets show distinctive patterns for different protein structures, however pro-

tein chains generally do not experience the kind of encirclement that first motivated our

construction of E-sets, in which one curve wraps many times around another. This kind of

encirclement does occur between a protein chain and a smoother version of the chain, as we

show in Figure 7.12. Let X be a 3×N array with columns containing the xyz coordinates

of the atoms comprising a protein’s backbone chain, and let Ak(X) denote the kth spatial
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average of X, where a sequence of spatial averages is defined by

A0(X) = X,

[Ak+1(X)]1 = [X]1, [Ak+1(X)]N = [X]N ,

[Ak+1(X)]i =
[Ak(X)]i−1 + [Ak(X)]i+1

2
,

for i = 2, . . . , N − 1. As k grows, Ak(X) approaches the straight line connecting the

endpoints of X.

Figure 7.12. The backbone X of the protein with PDB identifier 1ENH is shown in white,
and the smoother spatial average A5(X) of this curve is shown in black. The encirclement
of A5(X) by α-helices in X shows up clearly in the d = 4Å E-set for these curves.

For small values of k, Ak(X) is encircled by the α-helices in X. For larger values

of k, Ak(X) engages with the higher order coiling structures in X (e.g., barrels), and the

corresponding E-sets reflect this with signature markings. It is interesting to consider coiling

(the adding of coils to a given curve) as an inverse operation to averaging. Just as a smooth

version of X is encircled by the α-helices in the protein, the β-sheet strands in a protein

are encircled by a coiled version of X. Thus inverse operations reveal the two secondary

protein structures!
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Chapter 8

Closing Comments

There are many additional families of space curves that can be investigated using I-sets.

These include biological fibers such as root tendrils and arteries, as well as solutions of the

dynamical system ẋ = f(x). An example of such a system is given by Lorenz’s equations

[26], which give rise to a strange attractor and chaos. In the context of a dynamical system

we could associate to every point x in the domain of the field f a manifold M . We could

consider intersections between M and the forward (and backward) images of x under the

flow induced by f . This extension is similar of the extension of Gauss’s formula to vector

fields, (introduced by Lodewijk Woltjer in 1958, and called helicity [6]).

The method of I-sets extends to surfaces and higher dimensional manifolds. In general,

let M be an m-dimensional manifold in some larger space, and associate to each point of M

an n-dimensional manifold N . For instance, let M be a 2-dimensional manifold in R3, as

shown in Figure 8.1, and let the manifold N associated with point p ∈ M be given by the

tangent space TpM . The line through p normal to the tangent space and spheres centered

at p are additional possibilities for N . The manifold M can be characterized by the way in

which it intersects N . For instance if N is the line through p perpendicular to TpM , then

the length along N from p to the nearest point of intersection gives an idea of how close M

at p is to other pieces of M .

Recently, we discovered that this approach to characterizing surfaces has been investi-
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Figure 8.1. Extension of the I-set construction to a 2D surface M . Manifolds associated
with the point p ∈M include the tangent space TpM , and the line through p perpendicular
to TpM . The intersection of these manifolds with M give information about the shape of
M .

gated for the case where the intersecting manifold N is a sphere; Mortara and co-workers

[27] have studied how intersections made with a family of different sized spheres centered

at a point convey information about the shape of a surface near that point.

Our work is based on the idea of exploring the shape of a manifold in a scale d region

surrounding a given point on the manifold. This general idea can be implemented in a

variety of ways. For instance, in the case of a space curve x, we can consider the distance

from x(s) to the center of mass of the strand segment from s − d to s + d, or we could

consider the radius of the smallest ball containing the strand segment from s− d to s+ d.

Another construction is a d-scale tangent indicatrix, (i.e., the set of unit vectors pointing

from x(s) to x(s + d)). These are semi-global measures; they depend on more than what

goes on in a (vanishingly small) region around a point x(s), however they do not depend

on what happens very far away from x(s). There are many exciting ways to present this

data graphically, for instance see [37].
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Appendix A

Multi-Dimensional Scaling

Multi-Dimensional Scaling (MDS) is a technique for positioning points in an abstract
space so that the pairwise distances between them have prescribed values. It is easier to
digest a planar (or 3D) plot of n abstract points than it is to digest a table of (n+2)(n+1)

2
distance values, and so MDS is useful as a communication tool- it increases the information
content of a graph. MDS is a well established technique, and for a review of its history as
well as a detailed mathematical analysis of its various incarnations we recommend [5].

The name “Multidimensional Scaling” reveals little about the associated mathematical
technique; we suspect that this name continues to be used mainly because of cultural inertia,
and because “MDS” is a pleasant TLA (Three Letter Acronym). As far as we can tell, the
“multidimensional” in MDS refers to the multidimensionality of the abstract space, while
the “scale” refers to our ability to adjust the scale of the data in any of these dimensions,
(something not discussed below).

A.1 Uses

We use MDS to visualize the clustering of protein molecules that corresponds to I-set
based distances between them. MDS is used in this way in [19, 20] to understand the DALI
based distances between molecules. Different metrics give rise to different clusterings of
molecules.

In addition to visualizing the clustering of molecules, MDS allows for the reconstruction
of a curve given only the collection of pairwise distances between curve points, (this problem
was considered in Chapter 5).

A.2 Getting Positions from Distances

The goal in MDS is to construct n position vectors xk (k = 1, . . . , n) from a given set
of (n+2)(n+1)

2 scalar distances dij = dji (i, j = 0, 1, . . . , n), so that

‖xi − xj‖ = dij and ‖xi‖ = d0i. (A.1)
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The MDS problem is rich and interesting, especially when the equalities in (A.1) only need
to be satisfied approximately, (such as when the vector space of positions is so small that no
exact MDS solution is possible). We avoid this complexity in the following derivation. For
concreteness, we discuss the MDS problem in the context of the vector space RL (the set of
L-tuples of real numbers), endowed with the standard inner product 〈·, ·〉 and corresponding
norm ‖ ·‖. We use a set of n vectors yk ∈ RL to establish a consistent set of initial distances
dij , and from this set of distances, we construct a set of vectors xk ∈ RL satisfying (A.1).

Let y1, . . . , yn be n vectors in RL. Think of the kth vector yk as an L × 1 array, and
define Y = [y1 · · ·yn] to be the L× n array which contains the yk’s as columns. The yk’s
give rise to a set of distances dij = ‖yi−yj‖, and di0 = ‖yi‖, which we use as starting data
for constructing a set of vectors x1, x2, . . . , xn, that satisfy (A.1).

Our first step is to use the dij ’s to construct the n×n array P of inner products 〈xi,xj〉.
We find the 〈xi,xj〉’s in terms of the dij ’s before finding the xk’s. This can be done using
〈xi,xi〉 = d2

i0, and 2〈xi,xj〉 = d2
i0 + d2

j0 − d2
ij . (Conversely, these relations can be used to

obtain the dij ’s from the 〈xi,xj〉’s.) Once we have P, our job is to compute a collection
of xk’s that satisfies (A.1), that is, to find an L × n array X = [x1 · · ·xn] which satisfies
XTX = P.

In this problem, P = YTY is symmetric, and so from the spectral theorem [2], it
follows that an orthonormal basis (ei) for Rn exists with respect to which P is diagonal. In
particular, with E = [e1 · · · en], we can write

P = EDET , (A.2)

where D is diagonal. Because vTPv ≥ 0 for all vectors v (i.e., because P is positive semi-
definite), the ei’s can be ordered in E so that D = diag(d1, d2, . . . , dn), with d1 ≥ d2 ≥
· · · ≥ dn ≥ 0. If only the first k diagonal terms of D are nonzero, then (A.2) can be written
as

P = ẼD̃ẼT , (A.3)

where Ẽ = E(:, 1 : k), and where D̃ = diag(d1, . . . , dk). With D̃
1
2 = diag(

√
d1, . . . ,

√
dk), a

k × n array X satisfying XTX = P is given by

X = D̃
1
2 ẼT . (A.4)

When n ≥ L, dim(null(P = YTY)) ≥ n − L, and so k ≤ L. The columns of X from
(A.4) therefore reside in Rk ⊂ RL as desired. When k < L, the columns of X occupy a
k-dimensional hyperplane in RL. For real data this almost never happens, (i.e., usually
k = L). When n < L, we immediately have k ≤ n, and so the columns of X occupy at most
an n-dimensional hyperplane in RL.

A.2.1 Approximate Solutions

Because the ei’s are orthogonal, P can be written as the following sum of outer products

P = d1e1eT
1 + d2e2eT

2 + · · ·+ dneneT
n, (A.5)

where (abT )c = γa, with γ = 〈b, c〉. The tailing terms can be dropped without seriously
affecting the sum. In particular, let Pk denote the sum of the first k terms in the sum. The
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relative error ε associated with approximating P by Pk is given by

ε =
‖P−Pk‖
‖P‖

=
dk+1

d1
(A.6)

where ‖P‖ is the induced 2-norm on matrices. In the case of (A.3), dk+1 = 0, and so ε = 0.
Generally, Pk is the best rank k approximation to P, in the sense that it gives the lowest
value of the relative error ε in (A.6). As with the construction of X in (A.4), a rank k
approximation to the n×n array P gives rise to a set of n vectors in Rk with relative inner
products that are a good approximation to those in P; as k increases, so does the quality
of the approximation.

A.2.2 Orientation of the Data

Consider the quantity X(u) =
∑n

j=1〈u,xj〉2 where u is a unit vector in Rk. Note that

X(u) = uTXXTu = uT D̃u = u2
1d1 + u2

2d2 + · · ·+ u2
kdk, (A.7)

and so from the conditions
∑
u2
i = 1 and d1 ≥ d2 ≥ · · · ≥ dk ≥ 0, it follows that the

maximum value of X(u) is d1. This value is attained when u1 = 1 and when ui = 0 for
i 6= 1; we denote the associated vector by u1. The components of the xi’s (i.e., the columns
of X) in this direction are furthest from the origin in the sense that the sum of the squares
of their values is greatest.

Let ui denote the unit vector in Rk with a 1 in the ith slot, and with 0’s everywhere else,
(note that ui = ẼTei, and that the ui’s comprise an orthonormal basis for Rk). Generally,
the maximum value of X(u) over all unit vectors in u ∈ span(ui,ui+1, . . . ,uk) is di, and
X(ui) = di. Thus the data is preferentially aligned with the natural basis (ui) for Rk.

A.3 A Matlab Example

The eigenvalues in D and the eigenvectors in E can be computed using the eig com-
mand in Matlab (which uses QR factorization as described in [12]). The following code
demonstrates MDS by reconstructing a set of vectors (in R2) given only the inner products
between them. In Figure A.1, we show original and reconstructed vectors as points in the
plane; the two only differ by an isometry and so the reconstruction is a success.

Y=rand(2,15)−0.5; %Establish 15 vectors in Rˆ2, (i.e., the columns of Y).
P=Y'*Y; %Find the pairwise inner products between the vectors.
[E,D]=eig(P); %Given P, compute eigenvectors E and eigenvalues D.

%Arrange E and D so that the values in D are in increasing order:
[D,per]=sort(diag(D),1,'descend'); E=E(:,per);

%Create X
X=diag(sqrt(D(1:2)))*E(:,1:2)';
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Figure A.1. Original and reconstructed vectors from the above Matlab code.
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Appendix B

The Assignment Problem

Given A ∈ Rn×n, we wish to find a permutation P = (p1, p2, . . . , pn) of (1, 2, . . . , n) for
which the sum

∑n
k=1A(pk, k) is a minimum.

There are n! possible permutations P , and so directly checking the associated sums is out
of the question. We present our own version of the Munkres-Kuhn algorithm [17, 23], which
determines a minimizing P in only O(n3) operations. The algorithm extends to the case in
which A is rectangular, (simply append rows or columns to A to make it square), and also
to the case in which the sum must be maximized (replace A with −A).

The main observation behind the algorithm is that P is an optimal permutation for A if
and only if P is an optimal permutation for B, where B is obtained by adding a constant
to all the elements of a row or column of A. Our strategy is to repeatedly add and subtract
from the rows and columns of A until finding P is trivial.

B.1 Preprocessing

Start by subtracting the minimum value in each column from that column. Next, subtract
the minimum value in each row from that row. These operations cause Aij ≥ 0, and cause
every row and column to contain at least one 0. We add to rows and subtract from columns
so as to increase the size of a special selection of the resulting zeros in A; these special zeros
are referred to as F’s. The core routine in our algorithm inevitably increases the number of
F’s in A. This routine is repeated until the number of F’s equals n. At this point, the F’s
correspond to an optimizing permutation and we are done. Each cycle of the core routine
involves a possible change in the location of the existing F’s; we keep track of things by
blocking and unblocking the rows and columns of A.

B.2 Preliminary Selection

Cycle through the 0’s of A. If no F’s exist in the row or column of a 0, convert the 0 to a
F.
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B.3 Core Routine

Only enter into the following routine if there are fewer than n F’s.

Remove all blocks (rows and columns) from A, and then establish a new block on every
column with a F. There are fewer than n F’s (this is the condition for calling the routine),
and every column has at least one 0. It follows that there is at least one unblocked 0. Note
that the only reason that this 0 is not a F is that some other F exists in its row. Think of
each such unblocked 0 as the root of a plant-like tendril that will wander over the matrix in
a rectilinear path, in search of an unblocked 0 with no F in its row. The tendril starts at
an unblocked 0, moves horizontally to a F, moves vertically to a 0, horizontally to another
F, and so on. After the tendril moves horizontally in a row, the row is blocked, and before
the tendril moves vertically in a column, the column is unblocked. Thus, as a tendril snakes
its way through a matrix, rows become blocked and columns become unblocked. Ideally, a
tendril terminates at a 0 with no F in its row, as in Figure B.1.

Figure B.1. Tendril terminating at a 0 with no F in its row.

When this happens, the F’s along the tendril are changed to 0’s, and the 0’s are changed
to F’s, giving one more F than when the core routine started, as in Figure B.2. This ends
the current cycle of the routine. If there are now n F’s we are done; if there are still fewer
than n F’s, we return to the begining of this section for another cycle of the core routine.

Figure B.2. We end with one more F than when the core routine started.
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Generally, a single tendril won’t be successful in finding a terminal 0. Instead, it will
terminate with a F that has no unblocked 0’s in its column. When this happens, this
particular tendril is abandoned, and another is started from any of the unblocked 0’s in the
matrix (some of which may have become unblocked by another tendril). Thus the general
picture is of a dense system of intertwining tendrils, each constructed one after the other.

Frequently, there will be no unblocked 0’s at all, and so having multiple tendrils is not
enough. If α > 0 is the minimum unblocked value in A, we create a new unblocked 0 by
subtracting α from the unblocked columns of A and adding α to the blocked rows of A.
There are four categories of element to consider:

• An element is completely unblocked.
The elements in this category decrease in value, and one or more of them becomes
equal to 0. (These are the new 0’s that we wanted to create.)

• An element is in a blocked row and a blocked column.
The elements in this category increase in value, and so it could be that some 0’s
disappear. This is fine though because no elements in this category are marked as
F’s. (When a row is blocked, the single F that it contains has its column unblocked.)

• An element is in a blocked row but not a blocked column.
Elements in this category are unchanged in value.

• An element is in a blocked column but not a blocked row.
Elements in this category are unchanged in value.

Eventually, an unblocked 0 appears in A with no F in its row, (if this didn’t happen, it
would be possible for A to be completely blocked, but with fewer than n F’s). When this
0 appears, return to the beginning of Section B.3 for another cycle of the core routine.

B.4 Matlab Implementation

function P=munkres(A)
%munkres.m solves the assignment problem given a square matrix A with non INF values

n=size(A,1);
A=A−ones(n,1)*min(A,[],1);
A=A−min(A,[],2)*ones(1,n);

P=zeros(1,n); %P is a 1xn array, with each entry a nonnegative integer.
%P(i)>0 indicates a * in row P(i) of column i.
%P(i)=0 indicates that no * has been assigned for column i.

BR=zeros(n,1); %BR (for Block Rows) is a 1xn array of 1's and 0's.
%A 1 indicates that the corresponding row is blocked.

%Preliminary Star Selection:
for k=1:n

star=(A(:,k)==0 & ¬BR);
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if any(star)
index=find(star); index=index(1);
P(k)=index; BR(index)=1;

end
end

%Main Algorithm:
while ¬all(P>0) %perform a cycle if not all columns have stars.

%reset all blocks: BC (Block Columns) is like BR but for columns.
BR=0*BR; BC=P>0;
ZP=false(n);
%send out tendrils in search of terminal 0's.
%unblocked is an nxn logical array with 1's indicating unblocked elements
unblocked=(¬logical(ones(n,1)*BC) & ¬logical(BR*ones(1,n)));
Z=(abs(A)<1e−10 & unblocked); %unblocked Z's
rt=0; %terminal 0 row index.
%perform the following loop until a terminal 0 is found.
while rt==0

if all(all(¬Z)) %there are no unblocked Zs; so create at least one
h=min(min(A(unblocked)));
A=A−h*(ones(n,1)*(¬BC)−BR*ones(1,n));

Z=(abs(A)<1e−10 & unblocked);
end
%now grow tendrils from the elements of Z
while any(any(Z)) && rt==0

[r,c]=find(Z); r=r(1); c=c(1); %get indecies for the beginning of a tendril
flag=1;
while flag %propagate a tendril

if all(P6=r)
rt=r; ct=c; %row and column indecies of terminal 0
break

end
ZP(r,c)=1; c=find(P==r);
BR(r)=1; BC(c)=0;
%if this column contains no unblocked 0s, the tendril ends.
if ¬any(Z(:,c)&¬BR)

Ir=find(¬BR); sr=size(Ir,1);
Ic=find(¬BC); sc=size(Ic,2);
unblocked=false(n);
unblocked(Ir*ones(1,sc)+ones(sr,1)*(n*(Ic−1)))=true;
Z=(abs(A)<1e−10 & unblocked); %unblocked Z's
flag=0;
continue

end
r=find(Z(:,c)&¬BR); r=r(1);

end
end

end
%Having found a terminal 0, swap 0's and *'s
while P(ct)6=0

rtold=rt;
rt=P(ct); P(ct)=rtold;
ct=find(ZP(rt,:));

end
P(ct)=rt;

end
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Appendix C

Sequential List Alignment

Definitions:

• A list is a finite ordered collection of objects, such as A = (A1, A2, . . . , Am).

• A sublist is a subset of a list, with order inherited from the list; if β comes after α in
a sublist of A, then β comes after α in A.

• An inflation of (1, 2, . . . ,m) is a list of non-negative integers for which (1, 2, . . . ,m) is
the sublist obtained by selecting all positive entries; (1, 0, 2, 0, 0, 3, 4, 0) is an inflation
of (1, 2, 3, 4).

• A sequential alignment of lists A = (A1, A2, . . . , Am) and B = (B1, B2, . . . , Bn) is a
length L ≥ max{m,n} inflation α of (1, 2, . . . ,m) together with a length L inflation
β of (1, 2, . . . , n), such that αk and βk are never both equal to zero. (So in fact,
L ≤ m+ n.)

A sequential alignment pairs some of the elements of A and B. If αk and βk are non-zero,
then Aαk

is paired with Bβk
. If αk 6= 0 and βk = 0, then Aαk

isn’t paired to any element in
B; likewise if αk = 0 and βk 6= 0, then Bβk

isn’t paired to any element in A. For instance
if A = (A1, A2, A3, A4) and B = (B1, B2, B3, B4, B5, B6), and if α = (1, 2, 3, 0, 0, 4, 0) and
β = (0, 1, 2, 3, 4, 5, 6), then A and B are aligned as follows

A1 A2 A3 − − A4 −
− B1 B2 B3 B4 B5 B6

This alignment of A and B corresponds to a path through a rectangular grid of nodes, as
in Figure C.1. Every alignment of A and B corresponds to a path from the upper left node
to the lower right node. When moving from one node to another, it is possible to move,
down, diagonally, or to the right.

Consider the case in which each of the segments in Figure X has an associated cost. We
wish to find an alignment for which the associated net cost is a minimum. There are too
many paths to consider the cost associated with each one, and so we employ an indirect
approach which returns an optimum path in only O(mn). The strategy is to start at the
end point, and then for every node in the grid to determine the minimum cost to reach the
end point, as well as the direction (right, down, diagonal) in which to travel.
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Figure C.1. Rectangular grid of nodes.

C.1 Matlab Implementation

function [cost,A]=seqalign(Dcost,Rcost,Ccost)
%seqalign finds the minimal cost alignment of two sequences.
%
% >>D=rand(10,10); R=2*rand(10,10); C=2*rand(10,10);
% >>[cost,A]=seqalign(D,R,C)

[R,C]=size(Dcost);
optpath11=struct('cost',cell(R,C),'dir',cell(R,C));
optpath12=struct('cost',num2cell(flipud(cumsum(flipud(Rcost(:,C))))),...

'dir',cell(R,1));
[optpath12.dir]=deal([1 0]);
optpath21=struct('cost',num2cell(fliplr(cumsum(fliplr(Ccost(R,:))))),...

'dir',cell(1,C));
[optpath21.dir]=deal([0 1]);
optpath22=struct('cost',{0},'dir',{[0 0]});
optpath=[optpath11 optpath12; optpath21 optpath22];

for col=C:−1:1
for row=R:−1:1

Cdown= Rcost(row,col)+optpath(row+1,col ).cost;
Cright=Ccost(row,col)+optpath(row ,col+1).cost;
Cdiag= Dcost(row,col)+optpath(row+1,col+1).cost;
if Cdown≤Cright & Cdown≤Cdiag

optpath(row,col).cost=Cdown;
optpath(row,col).dir =[1 0];

elseif Cdiag≤Cright
optpath(row,col).cost=Cdiag;
optpath(row,col).dir =[1 1];

else
optpath(row,col).cost=Cright;
optpath(row,col).dir =[0 1];

end
end

end
cost=optpath(1,1).cost;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if nargout==2 %Only compute A if it has been requested.
A=zeros(2,R+C);
row=1; col=1; index=1;
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while row6=R+1 | col6=C+1
Dr=optpath(row,col).dir(1);
Dc=optpath(row,col).dir(2);
A(:,index)=[row*Dr;col*Dc];
row=row+Dr; col=col+Dc; index=index+1;

end
A=A(:,1:index−1);
end
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Appendix D

The Linking Number

Let x : [0, lx) −→ R3 and y : [0, ly) −→ R3 be two closed curves in R3. The closed curve x
is the boundary of an oriented surface D, over which there is a field of positive unit normal
vectors n. Generally, y intersects D transversally at a finite number of points y(tk). The
linking number of x with respect to y is given by

Lk(x,y) =
∑
k

sign(n · ∂y
∂t

), (D.1)

where n and ∂y
∂t are both evaluated at y(tk). When x is a circle, one of the possible

corresponding oriented surfaces D is a disk. Several basic examples are shown in Figure
D.1. Self-intersections in D have no effect on the definition of Lk(x,y).

Figure D.1. Basic examples of the linking number.

D.1 Gauss’s Integral Formula

One of the most intriguing things about Lk(x,y) is that it can be expressed as

Lk(x,y) =
1

4π

∫
T

(
∂x
∂s
× ∂y
∂t

)
· x(s)− y(t)
‖x(s)− y(t)‖3

ds dt, (D.2)

where T is the torus [0, lx) × [0, ly). Gauss gave (D.2) with no derivation in a half page
paper dated 1833. Our understanding of (D.2) follows from an analysis of the mapping
u : T −→ S2, which assigns to (s, t) the unit vector from x(s) to y(t).

u(s, t) =
y(t)− x(s)
‖y(t)− x(s)‖

. (D.3)
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We will see that u maps T into the unit sphere S2 in a way that reflects the topological
character of x and y. The normalized area of the image of T is the linking number of x
with respect to y; (D.2) is simply a formula for this area.

Let u(s, [0, ly)) denote the image of the curve {s} × [0, t) ⊂ T . This image is y as it would
appear in the celestial sphere of a miniscule insect at x(s), (i.e., the projection of y onto the
unit sphere centered at x(s)). As s varies, so does u(s, [0, ly)). If increase in s moves x(s)
up through the closed curve y, (as in Figure D.2), then the images u(s, [0, ly)) comprise a
tube that has collapsed around S2. In fact, this tube is the image of a section of the torus
T .

Figure D.2. When x passes through y, the corresponding section of the torus T collapses
around the unit sphere S2.

In Figure D.3, we illustrate the case in which an increase in s moves x(s) around the outside
of y. In this case, the images u(s, [0, ly)) comprise a tube that has been squashed onto one
side of S2. As before, this tube is the image of a section of T .

Figure D.3. When x passes around the outside of y, the corresponding section of the torus
T is squashed onto one side of the unit sphere S2.

Qualitative differences in the images of sections of T are reflected in the (signed) areas of
these images. A vanishingly small rectangle on T , with vertices (s, t), (s+ ds, t), (s, t+ dt),
and (s+ ds, t+ dt) has an image on S2 with area dA given by

dA =
(
∂u
∂s
ds× ∂u

∂t
dt

)
· u. (D.4)
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The sign differences in dA cause the areas of the overlapping tube pieces from Figure D.3
to almost completely cancel one another. In contrast, all pieces of the tube from Figure D.2
have the same sign. Normalizing by 4π, (the area of S2), we obtain the following measure
on sections R of the torus T

A(R) =
1

4π

∫
R
dA =

1
4π

∫
R

(
∂u
∂s
× ∂u
∂t

)
· u ds dt. (D.5)

As illustrated in Figures D.3 and D.2, A(R) reflects whether x passes through a closed curve
y or around it. When applied to the domain of u as a whole, A equals the linking number
of x with respect to y.

A(T ) = Lk(x,y) =
1

4π

∫
T

(
∂u
∂s
× ∂u
∂t

)
· u ds dt. (D.6)

Because of the continuity of u, T is mapped onto S2 like a flexible rubber inner-tube
squashed around a hard metallic ball. Either T covers all of S2 (perhaps multiple times), or
T doubles back on itself, and pieces of it have areas that exactly cancel. This is illustrated
in Figure D.4.

Figure D.4. Ways in which T can be mapped onto S2.

Gauss’s integral formula in its usual form (D.2) can be obtained from (D.6) by expanding
the partials of u.

∂u
∂s

= −∂x
∂s

1
‖y − x‖

− u
(
∂x
∂s
· u
)

1
‖y − x‖

∂u
∂t

=
∂y
∂t

1
‖y − x‖

+ u
(
∂y
∂t
· u
)

1
‖y − x‖

(D.7)

A double occurance of a vector in a scalar triple product results in a zero, and so(
∂u
∂s
× ∂u
∂t

)
· u =

(
∂x
∂s
× ∂y
∂t

)
· x− y
‖x− y‖3

, (D.8)
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showing that (D.6) is equivalent to (D.2). Note that s and t need not be arc-length param-
eters for x and y.

Our understanding of Gauss’s integral formula (D.2) follows what is often called a “degree
of map” argument. A more formal derivation along these lines is given in [13], in which
Lk(x,y) is defined as the Brouwer degree of the mapping (D.3). The Gauss integral inte-
grates over T . An alternative is to work directly on S2. Lk(x,y) can be found by picking
a point on S2 and counting the signs associated with the layers above this point. This
corresponds to finding all crossings of two curves when they are projected onto the plane
normal to the direction associated with the point chosen on S2.

D.2 Writhing Number

The writhing number of a closed curve x is often called the self-linking number of x
because it is given by

Wr(x) =
1

4π

∫
M

(
∂x
∂s
× ∂x
∂t

)
· x(s)− x(t)
‖x(s)− x(t)‖3

ds dt, (D.9)

that is, by exactly the same formula as (D.2), but with y(t) replaced by x(t). The torus
T = [0, lx) × [0, lx) is mapped onto S2 as it was before, except of course for points of the
form (s, s) ∈ T where the mapping (D.3) is undefined. These don’t end up destroying the
integral however; consider the set U ⊂ T consisting of points (s, t) for which the arc-length
along x from x(s) to x(t) is less than ε. As ε shrinks, u(s, t) becomes increasingly well
aligned with the tangent vectors to x at x(s) and x(t). This causes the integrand of (D.9)
to go to zero over U in spite of the ‖x(s) − x(t)‖3 term in the denominator. It follows
that the value of Wr(x) can be understood in terms of the set V = T − U . Topologically,
V is a doubly twisted band, as illustrated in Figure D.5; the writhing number of x is the
normalized area of the image of this band on S2.

Figure D.5. Illustrations of the subset V of the torus T . Topologically, this subset is a
doubly twisted band; the writhing number of a closed curve is the normalized area of the
image of this band on S2.
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