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These notes and observations document my progression through
Michael Spivak’s Calculus on Manifolds1. The idea is to document 1 Michael Spivak. Calculus on Manifolds.

Benjamin Cummings, 1965. ISBN
0846590219

my learning in beautiful Tufte-LATEX style documents. Spivak’s text is
black, while all of my own writing is blue.

Basic Definitions

Recall that a function f :R −→ R is differentiable at a ∈ R if there is a
number f ′(a) such that

lim
h→0

f (a + h)− f (a)
h

= f ′(a). (1)

This equation certainly makes no sense in the general case of a func-
tion f : Rn −→ Rm, but can be reformulated in a way that does. If
λ : R −→ R is the linear transformation defined by λ(h) = f ′(a) · h,
then equation (1) is equivalent to

lim
h→0

f (a + h)− ( f (a) + λ(h))
h

= 0. (2)

Equation (1) is often interpreted as saying that f (a) + λ is a good
approximation to f at a (see Problem 2-9). Henceforth we focus our
attention on the linear transformation λ and reformulate the defini-
tion of differentiability as follows.

A function f : R −→ R is differentiable at a ∈ R if there is a linear
transformation λ :R −→ R such that

lim
h→0

f (a + h)− ( f (a) + λ(h))
h

= 0.

In this form the definition has a simple generalization to higher di-
menstions:

A function f : Rn −→ Rm is differentiable at a ∈ Rn if there is a
linear transformation λ :Rn −→ Rm such that

lim
h→0

| f (a + h)− ( f (a) + λ(h))|
|h| = 0.

Note that h is a point of Rn and f (a + h)− ( f (a) + λ(h)) a point of
Rm, so the norm signs are essential. The linear transformation λ is
denoted D f (a) and called the derivative of f at a. The justification
for the phrase “the linear transformation λ” is
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2-1 Theorem. If f : Rn −→ Rm is differentiable at a ∈ Rn, there is a
unique linear transformation λ :Rn −→ Rm such that

lim
h→0

| f (a + h)− ( f (a) + λ(h))|
|h| = 0.

2-1 Proof. Suppose µ :Rn −→ Rm satisfies

lim
h→0

| f (a + h)− ( f (a) + µ(h))|
|h| = 0.

If d(h) = f (a + h)− f (a), then

lim
h→0

|λ(h)− µ(h)|
|h| = lim

h→0

|λ(h)− d(h) + d(h)− µ(h)|
|h|

≤ lim
h→0

|λ(h)− d(h)|
|h| + lim

h→0

|d(h)− µ(h)|
|h|

= 0.

If x ∈ Rn, then tx → 0 as t→ 0. Hence for x 6= 0 we have

0 = lim
t→0

|λ(tx)− µ(tx)|
|tx| =

|λ(x)− µ(x)|
|x| .

Therefore λ(x) = µ(x). �

We shall later discover a simple way of finding D f (a). For the mo-
ment let us consider the function f : R2 −→ R defined by f (x, y) =

sin x. Then D f (a, b) = λ satisfies λ(x, y) = (cos a) · x. To prove this,
note that

lim
(h,k)→0

| f (a + h, b + k)− ( f (a, b) + λ(h, k))|
|(h, k)| = lim

(h,k)→0

| sin(a + h)− (sin a + (cos a) · h)|
|(h, k)| .

Since sin′(a) = cos a, we have

lim
h→0

| sin(a + h)− (sin a + (cos a) · h)|
|h| = 0.

Since |(h, k)| ≥ |h|, it is also true that

lim
h→0

| sin(a + h)− (sin a + (cos a) · h)|
|(h, k)| = 0.

It is often convenient to consider the matrix of D f (a) : Rn −→ Rm

with respect to the usual bases of Rn and Rm. This m × n matrix is
called the Jacobian matrix of f at a, and denoted f ′(a). If f (x, y) =

sin x, then f ′(a, b) = (cos a, 0). If f : R −→ R, then f ′(a) is a 1× 1
matrix whose single enbtry is the number which is denoted f ′(a) in
elementray calculus.
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The definition of D f (a) could be made if f were defined only in
some open set containing a. Considering only functions defined on
Rn streamlines the statement of theorems and produces no real loss
of generality. It is convenient to define a function f : Rn −→ Rm

to be differentiable on A if f is differentiable at a for each a ∈ A. If
f : A −→ Rm, then f is called differentiable if f can be estended to a
differentiable function on some open set containing A.

Problems.

2-1.? Prove that if f : Rn −→ Rm is differentiable at a ∈ Rn, then it is
continuous at a. Hint: Use Problem 1-10.

If f is differentiable at a, then T ∈ L(Rn, Rm) exists such that

lim
h→0

| f (a + h)− ( f (a) + Th)|
|h| = 0.

Once |h| < 1, we have

| f (a + h)− ( f (a) + Th)|
|h| > | f (a + h)− ( f (a) + Th)|.

Let A = f (a + h)− f (a) and B = Th. From the above, we know that
|A− B| gets arbitrarily small with h, and so A→ B as h→ 0. We also
know that B → 0 as h → 0. This follows from Problem 1-10 which
guarantees the existence of a number M such that |B| = |Th| < M|h|.
If A→ B and B→ 0, then A→ 0. It follows that f is continuous at a.

2-2. A function f : R2 −→ R is independent of the second variable
if for each x ∈ R we have f (x, y1) = f (x, y2) for all y1, y2 ∈ R. Show
that f is independent of the the second variable if and only if there is
a function g : R −→ R such that f (x, y) = g(x). What is f ′(a, b) in
terms of g′?

Suppose f is independent of the second variable. Then define g(x) =
f (x, 0). Note that g :R −→ R and that f (x, y) = f (x, 0) = g(x).

In the other direction, let g : R −→ R such that f (x, y) = g(x). Note
that f (x, y1) = g(x) and that f (x, y2) = g(x). Thus f (x, y1) = f (x, y2),
and so f is independent of the second variable.

The derivative f ′(a, b) is the T ∈ L(R2, R) for which

lim
h1,h2→0

| f (a + h1, b + h2)− ( f (a, b) + T(h1, h2))|
|(h1, h2)|

= 0.

Rewriting this in terms of g, we obtain

lim
h1,h2→0

|g(a + h1)− (g(a) + T(h1, h2))|
|(h1, h2)|

= 0,

which is satisfied by T(h1, h2) = g′(a) · h1.
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2-3. Define when a function f : R2 −→ R is independent of the first
variable and find f ′(a, b) for such f . Which functions are indepen-
dent of the first variable and also of the second variable?

This is the same as the previous problem. A function f is indepen-
dent of the first variable iff f (x, y) = g(y) for some g : R −→ R. The
derivative f ′(a, b) is the linear map T ∈ L(R2, R) given by

T(h1, h2) = g′(b) · h2.

The functions f : R2 −→ R that are independent of both the first and
second variables are the constant functions.

2-4. Let g be a continuous real-valued function on the unit circle
{x ∈ R2 : |x| = 1} such that g(0, 1) = g(1, 0) = 0 and g(−x) = −g(x).
Define f :R2 −→ R by

f (x) =

{
|x| · g( x

|x| ) x 6= 0,

0 x = 0.

(a) If x ∈ R2 and h : R −→ R is defined by h(t) = f (tx), show that h
is differentiable.

We start by establishing that a subset of the conditions on f are
equivalent to homogeneity, i.e., the property that f (tx) = t · f (x).
First, note that the given f is homogenous. This follows from

|tx|g( tx
|tx| ) = |t| · |x|g(

t
|t| ·

x
|x| )

= |t| · |x|g(sign(t) · x
|x| )

= |t|sign(t) · |x|g( x
|x| ), because g(−u) = −g(u)

= t · |x|g( x
|x| )

In the other direction, given a homogenous f : R2 −→ R, note that
for any non-zero x ∈ R2,

f (x) = f (|x| x
|x| ) = |x| f (

x
|x| ) = |x|g(

x
|x| )

where g is the restriction of f to the unit circle. Also, because f
is homogenous, f (0) = 0, and g(−x) = −g(x). Thus the homo-
geneity of f is equivalent to the properties listed above, except for
g(0, 1) = g(1, 0) = 0.

Because f is homogenous, h(t) = tα for some α ∈ R, and so h is
differentiable. In particular, h′ = α.
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(b) Show that f is not differentiable at (0, 0) unless g = 0. Hint: First
show that D f (0, 0) would have to be 0 by considering (h, k) with
k = 0 and then with h = 0.

If it exists, D f (0, 0) is a linear map T ∈ L(R2, R) which satisfies

lim
u,v→0

| f (u, v)− T(u, v)|
|(u, v)| = 0.

Because it is a linear map, T(u, v) = αu + βv for α, β ∈ R. Fol-
lowing Spivak’s hint, if u = 0, then f (u, v) = 0 for all v, and the
argument to the limit becomes |βv|/|v| = |β|. For this to go to zero
with v, we need β = 0. Likewise, if v = 0 then we need α = 0.

Thus after considering only two ways of varying u and v, we have
the requirement that T = 0. Clearly, if f is zero everywhere (which
happens iff g is), then the above limit is satisfied at the origin,
making f differentiable there with derivative T = 0. Consider
however the case in which g = g1 6= 0 at some point x on the unit
circle. Let u = εx1 and v = εx2, so that as ε goes from 1 to 0, (u, v)
goes from x to the origin. Note that | f (u, v)| = |εg1|, and so the
argument to the limit becomes

| f (u, v)− T(u, v)|
|(u, v)| =

|εg1|
|ε| = |g1|,

which does not go to zero with ε. Therefore, in this case, f is not
differentiable at the origin.

2-5. Let f :R2 −→ R be defined by

f (x, y) =


x|y|√
x2+y2

(x, y) 6= 0,

0 (x, y) = 0.

Show that f is a function of the kind considered in Problem 2-4, so
that f is not differentiable at (0, 0).

In part (a) of Problem 2-4, we showed that the main hypotheses on f
are equivalent to homogeneity, i.e., that f (αx) = α · f (x).

Homogeneity follows easily for f in the current problem. The addi-
tional hypothesis from Problem 2-4 is also immediate, namely that
g(0, 1) = g(1, 0) = 0. Then, because g 6= 0, we know from Problem
2-4 (b) that f is not differentiable at (0, 0).
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2-6. Let f : R2 −→ R be defined by f (x, y) =
√
|xy|. Show that f is

not differentiable at (0, 0).

This is a repeat of part (b) from Problem 2-4. If the derivative of f
exists at (0, 0), it is the linear map T ∈ (R2, R) which satisfies

lim
x,y→0

| f (x, y)− T(x, y)|
|(x, y)| = 0.

By setting x = 0 and varying y, and then setting y = 0 and varying x,
it follows that T = 0. However if x = y = ε, then f (x, y) = |ε|, and so

| f (x, y)− T(x, y)|
|(x, y)| =

|ε|
|ε|
√

2
=

1√
2

,

which does not approach 0 with x and y. It follows that f is not
differentiable at (0, 0).

2-7. Let f : Rn −→ R be a function such that | f (x)| ≤ |x|2. Show that
f is differentiable at 0.

For f to be differentiable at 0 we need a linear map T ∈ (Rn, R) for
which

lim
x→0

| f (x)− ( f (0) + T(x))|
|x| = 0.

Let’s try T = 0. Note that | f (x)| ≤ |x|2 implies f (0) = 0, and so we
require

lim
x→0

| f (x)|
|x| = 0.

But this follows from the hypothesis on f . In particular, because

| f (x)|
|x| ≤

|x|2
|x| = |x|.
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2-8. Let f : R −→ R2. Prove that f is differentiable at a ∈ R if and
only if f 1 and f 2 are, and that in this case

f ′(a) =

(
( f 1)′(a)
( f 2)′(a)

)
.

For f to be differentiable at a, a linear map T needs to exist which Take a moment to consider what f
might stand for. It could represent the
time evolving frequency and amplitude
of a radio wave, or the shape of a curve
embedded in the plane, or many other
things. In the case of a planar curve,
f1 and f2 (and therefore f as we show
in this exercise) can be smooth and yet
leave the curve with a cusp!

causes the following quotient to go to zero with h.

f = x3
1

f = x2
2

f = [ [ f 
2

f 
1

Q =
|Th− ( f (a + h)− f (a))|

|h|

The map T takes h ∈ R and returns [αh βh]T ∈ R2 for some α, β ∈ R.
Expanding the terms in Q, we obtain

Q =

∣∣∣∣∣
[

αh
βh

]
− (

[
f1(a + h)
f2(a + h)

]
−
[

f1(a)
f2(a)

]
)

∣∣∣∣∣ 1
|h| =

∣∣∣∣∣
[

A
B

]∣∣∣∣∣ 1
|h| ,

where A, B ∈ R denote the components in the numerator.

Suppose the components of f are differentiable at a. We prescribe T
in terms of these derivatives. Setting α = D f1(a) causes

|A|
|h| =

|αh− ( f1(a + h)− f1(a))|
|h| → 0 as h→ 0.

Likewise setting β = D f2(a) causes |B|/|h| to go to zero with h. In
Problem 1-1 we showed that |x| ≤ ∑ |xi|, and so

Q =

∣∣∣∣∣
[

A
B

]∣∣∣∣∣ 1
|h| ≤

|A|
|h| +

|B|
|h| .

Our selection of α and β therefore causes Q → 0 as h → 0. It follows
that f is differentiable at a as desired.

Conversely, if f is differentiable at a, then because |xi| ≤ |x|, we have

|A|
|h| ≤

∣∣∣∣∣
[

A
B

]∣∣∣∣∣ 1
|h| = Q

Thus |A|/|h| → 0 as h → 0. It follows that f1(x) is differentiable at a,
with derivative given by the α from T. Similarly, D f2(a) = β.
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2-9. Two functions f , g :R −→ R are equal up to nth order at a if

lim
h→0

f (a + h)− g(a + h)
hn = 0.

(a) Show that f is differentiable at a if and only if there is a function
g of the form g(x) = a0 + a1(x− a) such that f and g are equal up
to first order at a.

If f is differentiable at a, then some β ∈ R exists such that

lim
h→0

| f (a + h)− ( f (a) + βh)|
|h| = 0.

If g(x) = f (a) + β(x− a), then g(a + h) = f (a) + βh, and

lim
h→0

| f (a + h)− g(a + h)|
|h| = 0.

Finally, A→ 0 iff |A| → 0, and so

lim
h→0

f (a + h)− g(a + h)
h

= 0, (3)

which means that f and g are equal up to first order at a.

The converse as stated is false. This is because a limit concerns
the behavior on approach to a point, rather than at a point. The
limit of f (x) as x approaches a is independent of the value of f (a),
or whether f is even defined at a. Spivak is clear about this in
the last section of Chapter 1. As a result, equation (3) can be true
with f taking on any value at a, and so f doesn’t even need to be
continuous at a.

The converse is true if we add the condition that f (a) = g(a). If A different way to make the converse
true is to add the condition that f be
continuous at a.

g = a0 + a1(x− a), then this condition causes a0 = f (a). Then (3)
and the fact that A→ 0 iff |A| → 0 gives us

lim
h→0

| f (a + h)− ( f (a) + a1h)|
|h| = 0.

This is the definition of f being differentiable at a, with derivative
D f (a) = a1.
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(b) If f ′(a), ..., f (n)(a) exist, show that f and the function g defined
by

g(x) =
n

∑
i=0

f (i)(a)
i!

(x− a)i

are equal up to nth order at a. Hint: The limit

lim
x→a

f (x)−∑n−1
i=0

f (i)(a)
i! (x− a)i

(x− a)n

may be evaluated by L’Hospital’s rule.

One of my fond memories from university is of being admonished
during an early morning lecture to treat L’Hospital’s rule with
respect. “It is like a race car!” my professor exclaimed, grasping
for a way to connect with sleepy 18 year olds. “It is capable of
impressive speed, but also of impressive crashes.”

u

v a

I still think of a race car every time L’Hospital’s rule comes up,
however I also think of the picture to the right. If u(x) and v(x)
both approach 0 as x approaches a, and if both are differentiable
there, then u and v both look linear as you zoom in on a neighbor-
hood of a. If u(x) = αx and v(x) = βx, then by inspection (or basic
trig if you like), we obtain L’Hospital’s rule:

lim
x→0

u(x)
v(x)

= lim
x→0

u′(x)
v′(x)

=
α

β
.

In the given problem, for f and g to be equal up to nth order at a,
we need

lim
h→0

f (a + h)− g(a + h)
hn = 0.

Expanding the numerator U(h), we obtain

U(h) = f (a + h)− (A0 + A1h + A2
h2

2!
+ A3

h3

3!
+ ... + An

hn

n!
),

where Ak = f [k](a). Note that U[k](0) = 0 for k = 0, 1, 2, ..., n.

Next, consider the denominator V(h) = hn. Note that V[k](0) = 0
for k = 0, 1, 2, ..., n− 1, but that V[n](0) = n!. Thus the desired limit
can be evaluated by n− 1 applications of L’Hospital’s rule, the last
of which gives a quotient that is equal to zero. It follows that f
and g are equal up to nth order at a.
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