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Functions And Continuity

A function from Rn to Rm (sometimes called a (vector valued) func-
tion of n variables) is a rule which associates to each point in Rn

some point in Rm; the point a function f associates to x is denoted
f (x). We write f : Rn −→ Rm (read “ f takes Rn into Rm” or “ f , tak-
ing Rn into Rm,” depending on context) to indicate that f (x) ∈ Rm

is defined for x ∈ Rn. The notation f : A −→ Rm indicates that f (x)
is defined only for x in the set A, which is called the domain of f . If
B ⊂ A, we define f (B) as the set of all f (x) for x ∈ B, and if C ⊂ Rm

we define f −1(C) = {x ∈ A : f (x) ∈ C}. The notation f : A −→ B
indicates that f (A) ⊂ B.

A convenient representation of a function f : R2 −→ R may be
obtained by drawing a picture of its graph, the set of all 3-tuples of
the form (x, y, f (x, y)), which is actually a figure in 3-space (see, e.g.,
Figures 2-1 and 2-2 of Chapter 2).

If f , g : Rn −→ R, the functions f + g, f − g, f · g, and f /g are
defined precisely as in the one-variable case. If f : A −→ Rm and
g : B −→ Rp, where B ⊂ Rm, then the composition g ◦ f is defined by
g ◦ f (x) = g( f (x)); the domain of g ◦ f is A ∩ f −1(B). If f : A −→ Rm

is 1-1, that is, if f (x) 6= f (y) when x 6= y, we define f −1: f (A) −→ Rn

by the requirement that f −1(z) is the unique x ∈ A with f (x) = z.

A function f : A −→ Rm determines m component functions
f 1, ..., f m : A −→ R by f (x) = ( f 1(x), ..., f m(x)). If conversely, m
functions g1, ..., gm : A −→ R are given, there is a unique function
f : A −→ Rm such that f i = gi, namely f (x) = (g1(x), ..., gm(x)).
This function f will be denoted (g1, ..., gm), so that we always have
f = ( f 1, ..., f m). If π : Rn −→ Rn is the identity function, π(x) = x,
then πi(x) = xi; the function πi is called the ith projection function.

The notation limx→a f (x) = b means, as in the one-variable case, that
we can get f (x) as close to b as desired, by choosing x sufficiently
close to, but not equal to, a. In mathematical terms this means that
for every number ε > 0 there is a number δ > 0 such that | f (x) −
b| < ε for all x in the domain of f which satisfy 0 < |x − a| < δ. A
function f : A −→ Rm is called continuous at a ∈ A if limx→a f (x) =
f (a), and f is simply called continuous if it is continuous at each
a ∈ A. One of the pleasant surprises about the concept of continuity
is that it can be defined without using limits. It follows from the next
theorem that f : Rn → Rm is continuous if and only if f −1(U) is
open whenever U ⊂ Rm is open; if the domain of f is not all of Rn, a
slightly more complicated condition is needed.
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1-8 Theorem. If A ⊂ Rn, a function f : A −→ Rm is continuous if
and only if for every open set U ⊂ Rm there is some open set V ⊂ Rn

such that f −1(U) = V ∩ A.

Proof. Suppose f is continuous. If a ∈ f −1(U), then f (a) ∈ U. Since
U is open, there is an open rectangle B with f (a) ∈ B ⊂ U. Since
f is continuous at a, we can ensure that f (x) ∈ B, provided we
choose x in some sufficiently small rectangle C containing a. Do this
for each a ∈ f −1(U) and let V be the union of all such C. Clearly
f −1(U) = V ∩ A. The converse is similar and is left to the reader. �

Let a ∈ A and ε > 0. Let U be an open rectangle containing a, and
within the sphere of radius ε centered at f (a). By hypothesis there
is some open set V ⊂ Rn such that f −1(U) = V ∩ A. In words, any
x ∈ V that f can act on will get mapped to U. Because V is open and
a ∈ V, there is an open rectangle B ⊂ V that contains a. If δ is the
shortest of all the distances from a to the faces of B, then |x − a| < δ

ensures x ∈ B, which ensures that f (x) ∈ U, which ensures that f (x)
is within ε of f (a). �

The following consequence of Theorem 1-8 is of great importance.

1-9 Theorem. If f : A −→ Rm is continuous, where A ⊂ Rn, and A is
compact, then f (A) ⊂ Rm is compact.

Proof. Let O be an open cover of f (A). For each open set U in O
there is an open set VU such that f −1(U) = VU ∩ A. The collection
of all VU is an open cover of A. Since A is compact, a finite number
VU1 , ..., VUn cover A. Then U1, ..., Un cover f (A). �

If f : A −→ R is bounded, the extent to which f fails to be continuous
at a ∈ A can be measured in a precise way. For δ > 0 let

M(a, f , δ) = sup{ f (x) : x ∈ A and |x− a| < δ},
m(a, f , δ) = inf{ f (x) : x ∈ A and |x− a| < δ}.

The oscillation o( f , a) of f at a is defined by

o( f , a) = lim
δ→0

(M(a, f , δ)−m(a, f , δ)) .

This limit always exists, since M(a, f , δ) − m(a, f , δ) decreases as δ

decreases. There are two important facts about o( f , a).
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1-10 Theorem. The bounded function f is continuous at a if and only
if o( f , a) = 0.

Proof. Let f be continuous at a. For every number ε > 0 we can
choose a number δ > 0 so that | f (x)− f (a)| < ε for all x ∈ A with
|x − a| < δ; thus M(a, f , δ) − m(a, f , δ) ≤ 2ε. Since this is true for If w ≥ 0 and w < ε for all ε > 0, then it

must be that w = 0. For if w 6= 0, then
w < ε is violated.

every ε, we have o( f , a) = 0. The converse is similar and is left to the
reader. �

Let ε > 0. If o( f , a) = limδ→0 (M(a, f , δ)−m(a, f , δ)) = 0, then there
is a ∆ such that for any δ < ∆ we have

M(a, f , δ)−m(a, f , δ) < ε.

That is, if |x − a| < δ, then the difference between the least up-
per bound and the greatest lower bound on f (x) is less than ε. The
difference between an upper bound and a lower bound of a set is
greater than the difference between any two elements of the set, and
so we are done: having x within δ of a causes | f (x)− f (a)| to be less
than ε. �

1-11 Theorem. Let A ⊂ Rn be closed. If f : A −→ R is any bounded
function, and ε > 0, then {x ∈ A : o( f , x) ≥ ε} is closed.

Proof. Let B = {x ∈ A : o( f , x) ≥ ε}. We wish to show that
Rn − B is open. If x ∈ Rn − B, then either x /∈ A or else x ∈ A
and o( f , x) < ε. In the first case, since A is closed, there is an open
rectangle C containing x such that C ⊂ Rn − A ⊂ Rn − B. In the
second case there is a δ > 0 such that M(x, f , δ) − m(x, f , δ) < ε.
Let C be an open rectangle containing x such that |x − y| < δ for
all y ∈ C. Then if y ∈ C there is a δ1 such that |x − z| < δ for all I had to read this several times. Con-

sider a particular y that is within δ of x.
For instance, suppose |x− y| = 0.95 · δ.
If you stay close enough to this y, your
distance to x will still be less than δ.

z satisfying |z − y| < δ1. Thus M(y, f , δ1) − m(y, f , δ1) < ε, and
consequently o(y, f ) < ε. Therefore C ⊂ Rn − B. �

Problems.

1-23. If f : A −→ Rm and a ∈ A, show that limx→a f (x) = b if and
only if limx→a f i(x) = bi for i = 1, ..., m.

From Problem 1-1 we know that | f (x) − b| ≤ ∑m
i=1 | f i(x) − bi|.

If limx→a f i(x) = bi, then given ε > 0, we can find δi such that
|x − a| < δi causes | f i(x)− bi| < ε/m. Making |x − a| less than the
smallest δi causes ∑m

i=1 | f i(x)− bi| < ε, and therefore | f (x)− b| < ε.

In the other direction, note that u2
i ≤ u2

1 + ... + u2
m, and so |ui| ≤ |u|.

If limx→a f (x) = b, we can make | f (x)− b| less than some ε > 0 by
keeping |x − a| less than some δ. Because |ui| ≤ |u|, we also have
| f i(x)− bi| < ε.
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1-24. Prove that f : A −→ Rm is continuous at a if and only if each f i

is.

This follows from the previous problem, replacing b with f (a).

1-25. Prove that a linear transformation T : Rn −→ Rm is continuous.
Hint: use Problem 1-10.

From Problem 1-10 we know that |T(h)| < M|h| for some number M.
To show continuity at a ∈ Rn, we need |T(x)− T(a)| to be controlled
by |x− a|. If |x− a| < δ, then

|T(x)− T(a)| = |T(x− a)| < M|x− a| < Mδ.

Thus we can make |T(x)− T(a)| < ε by choosing δ = ε/M.

1-26. Let A = {(x, y) ∈ R2 : x > 0 and 0 < y < x2}.

A

(a) Show that every straight line through (0, 0) contains an interval
around (0, 0) which is in R2 − A.

The only lines through (0, 0) which intersect A are those given by
y = αx for α > 0, and these intersect A whenever x > α. It follows
that on these lines, the interval with x ∈ (−α, α) is in R2 − A. All
other lines through (0, 0) have no intersection with A, and so any
interval on these lines containing (0, 0) is in R2 − A.

(b) Define f : R2 −→ R by f (x) = 0 if x /∈ A and f (x) = 1 if x ∈ A.
For h ∈ R2 define gh : R −→ R by gh(t) = f (th). Show that each gh

is continuous at 0, but f is not continuous at (0, 0).

The function gh(t) radially scales h by the multiplier t, and then
samples f at the new point. For small enough t the scaled point th
is within the interval established in (a). Therefore, given h, there
is an ε > 0 such that gh(t) = gh(0) = 0 for |t| < ε. Thus gh(t) is
continuous at 0. In contrast, f ((0, 0)) = 0 and f ((ε, ε2/2)) = 1 for
any ε > 0, and so f is not continuous at (0, 0).
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1-27. Prove that {x ∈ Rn : |x − a| < r} is open by considering the
function f :Rn −→ R with f (x) = |x− a|.

The function f returns the distance to a given point a. Intuitively, as
two points get closer together, so do the distances from these points
to a third point a. We formalize this by recalling Problem 1-4 where
we showed that ||u| − |v|| ≤ |u− v|. With u = x − a and v = y− a,
this becomes

| f (x)− f (y)| ≤ |x− y|.

Thus we can ensure | f (x) − f (y)| < ε by picking |x − y| < ε. It
follows that f is continuous.

If U is the open set (q, r) where q is any negative number, then f −1(U)

is the set {x ∈ Rn : |x − a| < r}. Because f is continuous, it follows
from Theorem 1-8 that this set is open.

Note that f only maps to the non-negative part of R. No matter!
Theorem 1-8 works even though f never reaches parts of U.

1-28. If A ⊂ Rn is not closed, show that there is a continuous func-
tion f : A −→ R which is unbounded. Hint: If x ∈ Rn − A but x /∈
interior(Rn − A), let f (y) = 1/|y− x|.

If A ⊂ Rn is not closed, then Rn − A is not open, and there exists a
point x /∈ A with the property that every open rectangle containing x
contains a point y ∈ A.

My own difficulty now is being sure that Spivak’s f (y) is actually
continuous. Certainly as a mapping from Rn to R, the function f (y)
is continuous except at x. But what does continuity mean if the do- This is a preview of coming attractions

for me, as the next book on my reading
list is Topology by James Munkres.

main of f is some subset of Rn with a bizarre structure? For instance
what if A consists of isolated points? Are assertions of continuity
vacuously true? If we claim some property for all y within ε of x,
but there are no such y, then our claim can’t be false because of an
absence of counter examples.

My concern arises because the definition of x allows A to consist of
a sequence of discrete y values. Given yk ∈ A, we can build an open
rectangle about x, all points of which are closer to x than say |yk|/2.
This new open rectangle is guaranteed to contain some yk+1 ∈ A, and
so on. As an example A ⊂ R could consist of the points 1/k for all
integers k.

Let us agree that if f : A −→ B is continuous and U ⊂ A, then f
restricted to U is also continuous. With this agreement we can move
forward. As y → x, Spivak’s continuous function gets arbitrarily big,
so we are done.
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1-29. If A is compact, prove that every continuous function f : A → R

takes on a maximum and a minimum value.

From Theorem 1-9 we know that f (A) is compact, and from Problem
1-20 we know that f (A) ⊂ R is closed and bounded. Then from real
analysis, we know that a closed and bounded subset of R contains
maximum and minimum elements.

This last fact is easy to prove. Any bounded subset U ⊂ R has a least
upper bound b, and b is the maximum element of U if b ∈ U. To
show that b ∈ U, we construct a sequence of increasing xi ∈ U that
approach b. We can do this because b is the least upper bound of U.
Given any ε > 0, we can find an xi within ε of b because otherwise
b− ε would be an upper bound of U, contrary to hypothesis. Because
U is closed, it contains the limit of any sequence of its elements, and
so it contains b. A similar argument applies to the minimum element.

1-30. Let f : [a, b] −→ R be an increasing function. If x1, ..., xn ∈ [a, b]
are distinct, show that

n

∑
i=1

o( f , xi) < f (b)− f (a).

Suppose f is defined on the closed interval [u, v], and xi ∈ (u, v). We
can find δ > 0 such that xi − δ and xi + δ are in (u, v). Then, because
f is increasing, o( f , xi) ≤ f (xi + δ)− f (xi − δ) < f (v)− f (u).

Suppose our interval is [a, v] and we care about o( f , a). f isn’t de-
fined for x < a, and so o( f , a) involves intervals of the form (a, a + δ).
Pick one of these δ and note that because f is increasing, o( f , a) ≤
f (a + δ)− f (a) < f (v)− f (a). Similarly, if our interval is [u, b], then
o( f , b) < f (b)− f (u).

Order and relabel the xi’s from the problem statement so that

a ≤ x1 < x2 < ... < xn ≤ b.

Let s0 = a, let si be some point strictly between xi and xi+1, let sn = b,
and note that xi ∈ [si−1, si]. From our work above, we know that

o( f , xi) < f (si)− f (si−1).

Summing these terms for i = 1 to n, we find that everything cancels
except f (s0 = a) and f (sn = b), leaving us with the desired result.
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