CHAPTER 1: FUNCTIONS ON EUCLIDIAN SPACE 14

Subsets of Euclidean Space

The closed interval [a, b] has a natural analogue in R?. This is the
closed rectangle [a,b] x [c,d], defined as the collection of all pairs
(x,y) withx € [a,b] and y € [c,d]. More generally, if A C R™ and
B C R", then A x B C R™*" is defined as the set of all (x,y) € R""

with x € Aand y € B. In particular, R"™" = R"™ x R®. If A C R", The end construct here seems to be
B C R",and C C R?, then (A x B) x C = A x (B x C), and both of an ordered list of arbitrary length.

. . L. Building this out of the idea of an
these are denoted simply A x B x C; this convention is extended to ordered pair is awkward, because really,
the product of any number of sets. The set [a1,b1] X - -+ X [a,, by] C (A x B) x Cand A x (B x C) are not

the same. A declaration that they are
should be proceeded by “Let us agree
(an,by) C R™is called an open rectangle. More generally a set that” or something similar.

R" is called a closed rectangle in R"”, while the set (a1,b1) X -+ X

U C R" is called open (Figure 1-1) if for each x € U there is an open
rectangle A such that x € A C U.

Figure 1-1

A subset C of R" is closed if R" — C is open. For example, if C con-
tains only finitely many points, then C is closed. The reader should
supply the proof that a closed rectangle in IR” is indeed a closed set.

Pick any point x that is not in the given closed rectangle A. The

ith component x; of x is not in the ith closed interval [a;, b;] used to
define A. It follows that x; is contained in an open interval (&;, B;)
which does not overlap [a;, b;]. The product of these open intervals is
an open rectangle containing x which does not overlap A. It follows
that R” — A is an open set, i.e., that A is a closed set.

If A C R"and x € R", then one of three possibilities must hold
(Figure 1-2):

1. There is an open rectangle B such that x € B C A.
2. There is an open rectangle B such that x € B C R" — A.

3. If B is any open rectangle with x € B, then B contains points of
both A and R" — A.

Figure 1-2
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Those points satisfying (1) constitute the interior of A, those satis-
fying (2) the exterior of A, and those satisfying (3) the boundary of
A. Problems 1-16 to 1-18 show that these terms may sometimes have
unexpected meanings.

It is not hard to see that the interior of any set A is open, and the
same is true for the exterior of A, which is, in fact, the interior of

R" — A. Thus (Problem 1-14) their union is open, and what remains,
the boundary, must be closed.

A collection O of open sets is an open cover of A (or, briefly, cov-
ers A) if every point x € A is in some open set in the collection O.
For example, if O is the collection of all open intervals (a,a + 1) for
a € R, then O is a cover of R. Clearly no finite number of the open
sets in O will cover R or, for that matter, any unbounded subset of
RR. A similar situation can also occur for bounded sets. If O is the
collection of all open intervals (1/n,1 —1/n) for all integers n > 1,
then O is an open cover of (0,1), but again no finite collection of sets
in O will cover (0,1). Although this phenomenon may not appear
particularly scandalous, sets for which this state of affairs cannot
occur are of such importance that they have received a special des-
ignation: a set A is called compact if every open cover O contains a
finite subcollection of open sets which also covers A.

A set with only finitely many points is obviously compact and so
is the infinite set A which contains 0 and the numbers 1/# for all
integers n (reason: if O is a cover, then 0 € U for some open set U
in O; there are only finitely many other points of A not in U, each
requiring at most one more open set).

Recognizing compact sets is greatly simplified by the following re-
sults, of which only the first has any depth (i.e., uses any facts about
the real numbers).

1-3 Theorem (Heine-Borel). The closed interval [a, D] is compact.
Proof. If O is an open cover of [a,b], let

A={x:a<x<band [g,x] is covered by

some finite number of open sets in O}.

Note that 2 € A and that A is clearly bounded above (by b). We
would like to show that b € A. This is done by proving two things
about a = least upper bound of A; namely, (1) « € A and (2) b = «.

Since O is a cover, « € U for some U in O. Then all points in some
interval to the left of a are also in U (see Figure 1-3). Since « is the
least upper bound of A, there is an x in this interval such that x € A.

A fundamental property of R is that
any subset that is bounded above has a
least upper bound. It helps me to think
about sets that lack this property, such
as the rational numbers. If A consists of
the rationals that are less than 7, then
A has a rational upper bound (e.g., 4),
however A has no rational least upper
bound. (Because given any rational
upper bound g, it’s always possible to
find a smaller rational upper bound b.)

\/

Figure 1-3
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Thus [a, x] is covered by some finite number of open sets of O, while
[x,a] is covered by the single set U. Hence [a, a] is covered by a finite
number of open sets of O, and « € A. This proves (1).

To prove that (2) is true, suppose instead that « < b. Then there is
a point x’ between a and b such that [x, x| C U. Since a € A, the
interval [a, «] is covered by finitely many open sets of O, while [, x’]
is covered by U. Hence x’ € A, contradicting the fact that « is an
upper bound of A. O

If B C R™ is compact and x € R", it is easy to see that {x} x B C
R™*™ is compact’. However, a much stronger assertion can be made.

1-4 Theorem. If B is compact and O is an open cover of {x} x B, then
there is an open set U C R" containing x such that U x B is covered
by a finite number of sets in O.

Proof. Since {x} x B is compact, we can assume at the outset that
O is finite, and we need only find the open set U such that U x B is
covered by O.

For each y € B the point (x,y) is in some open set W in O. Since W is

open, we have (x,y) € U, x V, C W for some open rectangle U, x V.

The sets V), cover the compact set B, so a finite number Vi, Vik
also cover B. Let U = Uy; N ... N Uy Then'if (x',y") € U x B, we
have y' € V,; for some i (Figure 1-4), and certainly x" € U,;. Hence
(x,y) € U,; x Vy;, which is contained in some W in O. OJ

Wi

W,

Figure 1-4

1If Uis a setin R” x R™, and x € R",
let Uy = {y € R" : (x,y) € U}. Call
U, the section of U by x. Lety € Uy.
If U is open, then an open rectangle in
U contains (x,y). The section of this
rectangle by x is an open rectangle in
Uy that contains y. Thus U, is open.

Let P be an open cover of {x} x B, and
let Q consist of the sections of the sets
in P by x. These sections are open, and
they cover B. Because B is compact, it
is covered by a finite number of these
sections. The corresponding (finitely
many) sets in P cover {x} x B. O
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1-5 Corollary. If A C R" and B C R™ are compact, then A x B C
R™*™ is compact.

Proof. If O is an open cover of A x B, then O covers {x} x B for each
x € A. By Theorem 1-4 there is an open set U, containing x such that
U, x B is covered by finitely many sets in O. Since A is compact, a
finite number Uy, ..., Uy, of the Uy cover A. Since finitely many sets
in O cover each U,; X B, finitely many cover all of A x B. O

1-6 Corollary. A; X - -- X Ay is compact if each A; is. In particular, a
closed rectangle in IR is compact.

1-7 Corollary. A closed bounded subset of R" is compact. (The con-
verse is also true (Problem 1-20).)

Proof. If A C R" is closed and bounded, then A C B for some closed
rectangle B. If O is an open cover of A, then O together with R" — A
is an open cover of B. Hence a finite number Uj, ..., U, of sets in O,
together with R” — A perhaps, cover B. Then Uy, ..., U, cover A. O

Problems.

1-14.* Prove that the union of any (even infinite) number of open
sets is open. Prove that the intersection of two (and hence of finitely
many) open sets is open. Give a counterexample for infinitely many
open sets.

Let A be a (possibly infinite) collection of open sets. Let x be in the
union U of these sets, (i.e., x € A for at least one A € A). Because

A is open, it contains an open rectangle that contains x. Everything
in A is part of the union, including this open rectangle. Thus for any
x € U, we have an open rectangle in U that contains x. It follows that
U is open.

Let x be in the intersection of two open sets A and B. Because A is
open, x belongs to an open rectangle in A, formed by the product

a1 X ap X ... X a0y, where each «; is an open interval on R. Likewise
for B, where the open rectangle is given by 1 X B2 X ... X By. The
ith intervals «; and B; overlap because they both contain the ith com-
ponent of x. The intersections a; N B; give us a new open rectangle
containing x which is in both A and B. It follows that A N B is open.

Consider the open sets (—1/n,1/n) for n = 1,2,3, ... The intersection
of this infinite collection of sets is the single point at zero. Any set
consisting of a single point is not open.

17
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1-15. Prove that {x € R" : |x —a| < r} is open (see also Problem
1-27).
Let B (for ball) denote the specified set, and let x € B. Any y that is

close enough to x will be within B. Specifically, if |y — x| < €, with
€ =r—|a— x|, then

y—al=ly—x—(a—x)|
<ly—x|+]a—x
<r.

As a result, if R is an open rectangle centered at x, all of whose
points are closer to x than €, then R C B. We build such an R as a
hypercube centered at x and with sides of length 2.

R=(x1—=Lx1+D)x(xo—Lxag+1)x..x(xyp—1x,+1)

The distance between x and any u € R is less than Vnl2. Therefore,
setting I = €/+/n causes every point in R to be closer to x than e,
which causes R C B. Remember that R contains x, which was chosen
arbitrarily within B, and so B is open.

1-16. Find the interior, exterior, and boundary of the sets

{x eR": |x| <1}
{x eR": |x| =1}

{x € R" : each x' is rational}.

Let A={xeR": |x| <1}

i. If |x| < 1, then x € B C A, where B is from the previous problem.
We showed that B is open, and so any x € B is surrounded by
an open rectangle entirely within B. This open rectangle is also
entirely within A. It follows that x is in the interior of A.

ii. Let|x| =1, and let R be an open rectangle containing x. If € is the

shortest distance from x to a face of R, then any y which satisfies

|x —y| < ewillalsobeinR. y = x + ﬁx satisfies this condition,

and is not in A. At the same time, x € R and is in A. It follows
that x is part of the boundary of A.

iii.

jary

Let |x| > 1. From Problem 1-15, we know we can build an open
rectangle containing x such that the maximum distance from x
to any point in the rectangle is less than some € > 0. Picking
€ = |x| — 1 ensures that no point in the rectangle is in A. It follows
that x is part of the exterior of A.

18
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Let A={x e R": |x| =1}.

From ii. above, we can build an open rectangle around any x € A
which contains points that are not in A. It follows that every x € A is
a boundary point. From iii. above, we know that any |x| > 1 is part
of the exterior of A. By a similar argument, we know that any |x| < 1
is also part of the exterior of A. It follows that A has no interior.

Let A = {x € R" : each x; is rational }.

Let x € R", and let R be an open rectangle containing x. The ith
coordinate of x belongs to some open interval (a;, b;) that defines

R in the ith dimension. We know from real analysis that there are
rational and irrational numbers on any open interval, so let #; and v;
be rational and irrational respectively on (a;,b;). The corresponding
vectors u € A and v € A are both in R. It follows that x is part of the
boundary of A. But x was arbitrary, and so the boundary of A is all
of R". It follows as a corollary that A has no interior and no exterior.

1-17. Construct a set A C [0,1] x [0,1] such that A contains at most
one point on each horizontal and each vertical line but boundary

A = [0,1] x [0,1]. Hint: It suffices to ensure that A contains points in
each quarter of the square [0,1] x [0,1] and also in each sixteenth, etc.

We build A as the infinite union AgU A1 U Ay U ...

A, A, U A, U A,

Ay is the set containing the single point (1, 1).

To build Ay, draw vertical and horizontal lines through all the points
in Ag U ...U Ag_q, creating an N x N checkerboard of squares. Then
draw a single dot in each square as follows.

Let (m,n) identify the square m from the left, and n from the bottom,
with each index ranging from 1 to N. Create an (N + 1) x (N +1)
grid within the small square at (m,n) by drawing N evenly spaced
horizontal lines, and N evenly spaced vertical lines. Place a single
point at the intersection of horizontal line m and vertical line 7.

19
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If R is any open rectangle around any point in [0,1] x [0,1], then

for high enough k our construction will result in a grid with small
squares some of which are contained in R. Our construction places

a point in each of these squares, and so R contains a point from A.
The coordinates of the points in A are rational, and so by the same
argument used in the previous problem, we know that R contains
points that are not in A. It follows that every point in [0,1] x [0,1] is a
boundary point. Finally, by construction we know that A contains at
most one point on each horizontal and vertical line.

1-18. If A C [0,1] is the union of open intervals (a;, b;) such that
each rational number in (0, 1) is contained in some (a;, b;), show that
boundary A = [0,1] — A.

The set A depends on the open intervals (a;,b;) that are assigned to Each (a;,b;) C [0,1] because otherwise

each rational number on (0,1). For instance we fail to have A C [0,1].

e If each rational number is assigned to (0,1), then A = (0,1).

e Lety € (0,1) be irrational, (e.g., equal to 7t/4). If rational numbers
less than 7y are assigned to (0, ), and rational numbers greater
than <y are assigned to (7,1), then A = (0,1) — {v}.

Spivak’s claim is that 0A = [0,1] — A in all cases, that is, regardless A denotes the boundary of A.
of the assignment of open intervals to rational numbers. To see this,
note that:

i. If x € A, then x is in the interior of A, because x is contained in an
open interval (a;, b;), all of whose elements belong to A.

ii. If x ¢ [0,1], then x is in the exterior of A, because we can enclose
x in an open interval that does not intersect [0, 1].

iii. If x € [0,1] — A, we know that there are rationals arbitrarily close Any rational belongs to A because it is
contained in its associated open interval

to x which belong to A. Any open interval that contains x (which (s, by) which belongs to A.

is not in A) will also contain these rationals (which are in A). It
follows that x € dA.

In iii. we establish that x € [0,1] — A implies x € dA. Ini. and
ii. we establish that x ¢ [0,1] — A implies x ¢ JA. It follows that
0A = [0,1] — A as desired.
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1-19.* If A is a closed set that contains every rational number r €
[0,1], show that [0,1] C A.

If A is a closed set that contains every rational number on [O, 1}, then
the complement of A (denoted A) is an open set that contains no
rational numbers on [0, 1].

Suppose A includes an irrational x € [0,1]. Because A is open, it con-
tains an open interval containing x. But any open interval containing
x contains rational numbers on [0,1], and A contains none of these. It
must be that A includes no irrational numbers on [0, 1].

We now know that A is an open set that contains no numbers on
[0,1]. It follows that A is a closed set that contains all numbers on
[0,1]. We write this as [0,1] C A.

1-20. Prove the converse of Corollary 1-7: A compact subset of R" is
closed and bounded (see also Problem 1-28).

If a set A is not closed, then the complement of A is not open, and Not closed is different than open. Sets
we know that some point x in the complement of A exists with the th?t are both closed and open are called
clopen .

following property:

Every open rectangle containing x also contains some y € A. (%)

Consider the open cover of A consisting of the complements of
closed rectangles containing x. Each of these anti-rectangles is open,
and together they cover every point in R" except for x. Therefore
they cover A, because A consists of points in R” except for x. Notice
that the union of any finite subset of these anti-rectangles leaves a gap
around x, within which we can place an open rectangle containing

x. From (%) we know that this open rectangle contains some y € A,
and so our finite subset of anti-rectangles does not cover A. We chose
this subset arbitrarily, and so we’ve established that A is not compact.
Showing that A is not closed implies A is not compact is the same as
showing that any compact set is closed.

To show that any compact set A is bounded, we begin with an open
cover consisting of unit hypercubes centered at every point in IR".
Because A is compact, it is covered by some finite number of these
unit hypercubes. A rectangle containing a finite number of unit hy-
percubes can be constructed by taking the minimum and maximum
of their coordinates in each dimension. This rectangle contains A and
so A is bounded.
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1-21. (a) If A is closed and x ¢ A, prove that there is a number d > 0
such that [y — x| > d forall y € A.

If Ais closed and x ¢ A, then x belongs to an open set (the com-
plement of A). An open rectangle exists that contains x and that is
wholly within the complement of A. If 4 is the shortest distance from
a face of this rectangle to x, then |y — x| > d for all y outside of the
rectangle, in particular for y € A.

(b) If A is closed, B is compact, and AN B = @, prove that there is

d > 0 such that [y — x| > dforally € A and x € B. Hint: For each
b € B find an open set U containing b such that this relation holds for
xeUnB.

In (a), we were working with a particular x. Here we need the same
outcome as (a), but true for all x € B.

Associate to each x € B the open sphere of radius d centered at x,
where d is provided by (a). See Problem 1-15 for certainty that the
sphere is open, and note that (a) ensures that the sphere has no in-
tersection with A. The set of these spheres over all x € B is an open
cover of B, and because B is compact, a finite sub collection of these
spheres also covers B. The minimum of the associated d values satis-
fies the given problem.

(c) Give a counterexample in R? if A and B are closed but neither is
compact.

A curve is a closed set in R2. A curve isn’t compact if it isn’t bounded
(i.e., doesn’t fit within some rectangle). Consider

A={(x,y)ly=0} and B={(x,y)ly=e¢"}.

By making x large enough, we can find points (x,0) € A and
(x,e~") € B that are arbitrarily close together.

22
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1-22.* If U is open and C C U is compact, show that there is a com-
pact set D such that C C interior D and D C U.

The complement of U is closed and has no intersection with the
compact set C. From Problem 1-21, we know some d > 0 exists for
which |[x —y| > d forany x ¢ Uand y € C.

Consider the open cover of C consisting of open spheres of radius
d/2 centered at points in C. Because C is compact, some finite sub
collection of these spheres also covers C. Let D be the (finite) union
of these same spheres plus their boundaries. D is the union of finitely
many closed spheres, and so D is closed. Also, by construction we
have C C interior D and D C U.

To show that D is compact, we need to show that D is bounded.
Every point in D is within d/2 of C, which is compact and there-
fore bounded, (i.e., contained in a rectangle). Expanding a rectangle
bounding C in all dimensions by d results in a new rectangle that
bounds D.

R"-U closed

C compact

Some of the
closed spheres
comprising D.
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