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Subsets of Euclidean Space

The closed interval [a, b] has a natural analogue in R2. This is the
closed rectangle [a, b] × [c, d], defined as the collection of all pairs
(x, y) with x ∈ [a, b] and y ∈ [c, d]. More generally, if A ⊂ Rm and
B ⊂ Rn, then A× B ⊂ Rm+n is defined as the set of all (x, y) ∈ Rm+n

with x ∈ A and y ∈ B. In particular, Rm+n = Rm ×Rn. If A ⊂ Rm, The end construct here seems to be
an ordered list of arbitrary length.
Building this out of the idea of an
ordered pair is awkward, because really,
(A× B)× C and A× (B× C) are not
the same. A declaration that they are
should be proceeded by “Let us agree
that” or something similar.

B ⊂ Rn, and C ⊂ Rp, then (A× B)× C = A× (B× C), and both of
these are denoted simply A× B× C; this convention is extended to
the product of any number of sets. The set [a1, b1]× · · · × [an, bn] ⊂
Rn is called a closed rectangle in Rn, while the set (a1, b1) × · · · ×
(an, bn) ⊂ Rn is called an open rectangle. More generally a set
U ⊂ Rn is called open (Figure 1-1) if for each x ∈ U there is an open
rectangle A such that x ∈ A ⊂ U.

Figure 1-1

A subset C of Rn is closed if Rn − C is open. For example, if C con-
tains only finitely many points, then C is closed. The reader should
supply the proof that a closed rectangle in Rn is indeed a closed set.

Pick any point x that is not in the given closed rectangle A. The
ith component xi of x is not in the ith closed interval [ai, bi] used to
define A. It follows that xi is contained in an open interval (αi, βi)

which does not overlap [ai, bi]. The product of these open intervals is
an open rectangle containing x which does not overlap A. It follows
that Rn − A is an open set, i.e., that A is a closed set.

If A ⊂ Rn and x ∈ Rn, then one of three possibilities must hold
(Figure 1-2):

1. There is an open rectangle B such that x ∈ B ⊂ A.
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Figure 1-2

2. There is an open rectangle B such that x ∈ B ⊂ Rn − A.

3. If B is any open rectangle with x ∈ B, then B contains points of
both A and Rn − A.
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Those points satisfying (1) constitute the interior of A, those satis-
fying (2) the exterior of A, and those satisfying (3) the boundary of
A. Problems 1-16 to 1-18 show that these terms may sometimes have
unexpected meanings.

It is not hard to see that the interior of any set A is open, and the
same is true for the exterior of A, which is, in fact, the interior of
Rn − A. Thus (Problem 1-14) their union is open, and what remains,
the boundary, must be closed.

A collection O of open sets is an open cover of A (or, briefly, cov-
ers A) if every point x ∈ A is in some open set in the collection O.
For example, if O is the collection of all open intervals (a, a + 1) for
a ∈ R, then O is a cover of R. Clearly no finite number of the open
sets in O will cover R or, for that matter, any unbounded subset of
R. A similar situation can also occur for bounded sets. If O is the
collection of all open intervals (1/n, 1− 1/n) for all integers n > 1,
then O is an open cover of (0, 1), but again no finite collection of sets
in O will cover (0, 1). Although this phenomenon may not appear
particularly scandalous, sets for which this state of affairs cannot
occur are of such importance that they have received a special des-
ignation: a set A is called compact if every open cover O contains a
finite subcollection of open sets which also covers A.

A set with only finitely many points is obviously compact and so
is the infinite set A which contains 0 and the numbers 1/n for all
integers n (reason: if O is a cover, then 0 ∈ U for some open set U
in O; there are only finitely many other points of A not in U, each
requiring at most one more open set).

Recognizing compact sets is greatly simplified by the following re-
sults, of which only the first has any depth (i.e., uses any facts about
the real numbers).

1-3 Theorem (Heine-Borel). The closed interval [a, b] is compact. A fundamental property of R is that
any subset that is bounded above has a
least upper bound. It helps me to think
about sets that lack this property, such
as the rational numbers. If A consists of
the rationals that are less than π, then
A has a rational upper bound (e.g., 4),
however A has no rational least upper
bound. (Because given any rational
upper bound a, it’s always possible to
find a smaller rational upper bound b.)

Proof. If O is an open cover of [a, b], let

A = {x : a ≤ x ≤ b and [a, x] is covered by

some finite number of open sets in O}.

Note that a ∈ A and that A is clearly bounded above (by b). We
would like to show that b ∈ A. This is done by proving two things
about α = least upper bound of A; namely, (1) α ∈ A and (2) b = α.

Since O is a cover, α ∈ U for some U in O. Then all points in some
interval to the left of α are also in U (see Figure 1-3). Since α is the
least upper bound of A, there is an x in this interval such that x ∈ A. a b

U
x’x α

Figure 1-3
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Thus [a, x] is covered by some finite number of open sets of O, while
[x, α] is covered by the single set U. Hence [a, α] is covered by a finite
number of open sets of O, and α ∈ A. This proves (1).

To prove that (2) is true, suppose instead that α < b. Then there is
a point x′ between α and b such that [α, x′] ⊂ U. Since α ∈ A, the
interval [a, α] is covered by finitely many open sets of O, while [α, x′]
is covered by U. Hence x′ ∈ A, contradicting the fact that α is an
upper bound of A. �

If B ⊂ Rm is compact and x ∈ Rn, it is easy to see that {x} × B ⊂
Rn+m is compact1. However, a much stronger assertion can be made. 1 If U is a set in Rn ×Rm, and x ∈ Rn,

let Ux = {y ∈ Rm : (x, y) ∈ U}. Call
Ux the section of U by x. Let y ∈ Ux .
If U is open, then an open rectangle in
U contains (x, y). The section of this
rectangle by x is an open rectangle in
Ux that contains y. Thus Ux is open.

Let P be an open cover of {x} × B, and
let Q consist of the sections of the sets
in P by x. These sections are open, and
they cover B. Because B is compact, it
is covered by a finite number of these
sections. The corresponding (finitely
many) sets in P cover {x} × B. �

1-4 Theorem. If B is compact and O is an open cover of {x} × B, then
there is an open set U ⊂ Rn containing x such that U × B is covered
by a finite number of sets in O.

Proof. Since {x} × B is compact, we can assume at the outset that
O is finite, and we need only find the open set U such that U × B is
covered by O.

For each y ∈ B the point (x, y) is in some open set W in O. Since W is
open, we have (x, y) ∈ Uy ×Vy ⊂W for some open rectangle Uy ×Vy.
The sets Vy cover the compact set B, so a finite number Vy1, ..., Vyk

also cover B. Let U = Uy1 ∩ ... ∩ Uyk. Then if (x′, y′) ∈ U × B, we
have y′ ∈ Vyi for some i (Figure 1-4), and certainly x′ ∈ Uyi. Hence
(x′, y′) ∈ Uyi ×Vyi, which is contained in some W in O. �

B

W1

W2

x

Uy1 Uy2

Figure 1-4
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1-5 Corollary. If A ⊂ Rn and B ⊂ Rm are compact, then A × B ⊂
Rn+m is compact.

Proof. If O is an open cover of A× B, then O covers {x} × B for each
x ∈ A. By Theorem 1-4 there is an open set Ux containing x such that
Ux × B is covered by finitely many sets in O. Since A is compact, a
finite number Ux1, ..., Uxn of the Ux cover A. Since finitely many sets
in O cover each Uxi × B, finitely many cover all of A× B. �

1-6 Corollary. A1 × · · · × Ak is compact if each Ai is. In particular, a
closed rectangle in Rk is compact.

1-7 Corollary. A closed bounded subset of Rn is compact. (The con-
verse is also true (Problem 1-20).)

Proof. If A ⊂ Rn is closed and bounded, then A ⊂ B for some closed
rectangle B. If O is an open cover of A, then O together with Rn − A
is an open cover of B. Hence a finite number U1, ..., Un of sets in O,
together with Rn − A perhaps, cover B. Then U1, ..., Un cover A. �

Problems.
1-14.? Prove that the union of any (even infinite) number of open
sets is open. Prove that the intersection of two (and hence of finitely
many) open sets is open. Give a counterexample for infinitely many
open sets.

Let A be a (possibly infinite) collection of open sets. Let x be in the
union U of these sets, (i.e., x ∈ A for at least one A ∈ A). Because
A is open, it contains an open rectangle that contains x. Everything
in A is part of the union, including this open rectangle. Thus for any
x ∈ U, we have an open rectangle in U that contains x. It follows that
U is open.

Let x be in the intersection of two open sets A and B. Because A is
open, x belongs to an open rectangle in A, formed by the product
α1 × α2 × ...× αn, where each αi is an open interval on R. Likewise
for B, where the open rectangle is given by β1 × β2 × ...× βn. The
ith intervals αi and βi overlap because they both contain the ith com-
ponent of x. The intersections αi ∩ βi give us a new open rectangle
containing x which is in both A and B. It follows that A ∩ B is open.

Consider the open sets (−1/n, 1/n) for n = 1, 2, 3, .... The intersection
of this infinite collection of sets is the single point at zero. Any set
consisting of a single point is not open.
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1-15. Prove that {x ∈ Rn : |x − a| < r} is open (see also Problem
1-27).

Let B (for ball) denote the specified set, and let x ∈ B. Any y that is
close enough to x will be within B. Specifically, if |y − x| < ε, with
ε = r− |a− x|, then

|y− a| = |y− x− (a− x)|
≤ |y− x|+ |a− x|
< r.

As a result, if R is an open rectangle centered at x, all of whose
points are closer to x than ε, then R ⊂ B. We build such an R as a
hypercube centered at x and with sides of length 2l.

R = (x1 − l, x1 + l)× (x2 − l, x2 + l)× ...× (xn − l, xn + l)

The distance between x and any u ∈ R is less than
√

nl2. Therefore,
setting l = ε/

√
n causes every point in R to be closer to x than ε,

which causes R ⊂ B. Remember that R contains x, which was chosen
arbitrarily within B, and so B is open.

1-16. Find the interior, exterior, and boundary of the sets

{x ∈ Rn : |x| ≤ 1}
{x ∈ Rn : |x| = 1}
{x ∈ Rn : each xi is rational}.

Let A = {x ∈ Rn : |x| ≤ 1}.

i. If |x| < 1, then x ∈ B ⊂ A, where B is from the previous problem.
We showed that B is open, and so any x ∈ B is surrounded by
an open rectangle entirely within B. This open rectangle is also
entirely within A. It follows that x is in the interior of A.

ii. Let |x| = 1, and let R be an open rectangle containing x. If ε is the
shortest distance from x to a face of R, then any y which satisfies
|x− y| < ε will also be in R. y = x + ε

2|x| x satisfies this condition,
and is not in A. At the same time, x ∈ R and is in A. It follows
that x is part of the boundary of A.

iii. Let |x| > 1. From Problem 1-15, we know we can build an open
rectangle containing x such that the maximum distance from x
to any point in the rectangle is less than some ε > 0. Picking
ε = |x| − 1 ensures that no point in the rectangle is in A. It follows
that x is part of the exterior of A.
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Let A = {x ∈ Rn : |x| = 1}.
From ii. above, we can build an open rectangle around any x ∈ A
which contains points that are not in A. It follows that every x ∈ A is
a boundary point. From iii. above, we know that any |x| > 1 is part
of the exterior of A. By a similar argument, we know that any |x| < 1
is also part of the exterior of A. It follows that A has no interior.

Let A = {x ∈ Rn : each xi is rational}.
Let x ∈ Rn, and let R be an open rectangle containing x. The ith
coordinate of x belongs to some open interval (ai, bi) that defines
R in the ith dimension. We know from real analysis that there are
rational and irrational numbers on any open interval, so let ui and vi

be rational and irrational respectively on (ai, bi). The corresponding
vectors u ∈ A and v /∈ A are both in R. It follows that x is part of the
boundary of A. But x was arbitrary, and so the boundary of A is all
of Rn. It follows as a corollary that A has no interior and no exterior.

1-17. Construct a set A ⊂ [0, 1]× [0, 1] such that A contains at most
one point on each horizontal and each vertical line but boundary
A = [0, 1]× [0, 1]. Hint: It suffices to ensure that A contains points in
each quarter of the square [0, 1]× [0, 1] and also in each sixteenth, etc.

We build A as the infinite union A0 ∪ A1 ∪ A2 ∪ ...

A0 A0 A1U A0 A1U A2U

A0 is the set containing the single point ( 1
2 , 1

2 ).

To build Ak, draw vertical and horizontal lines through all the points
in A0 ∪ ... ∪ Ak−1, creating an N × N checkerboard of squares. Then
draw a single dot in each square as follows.

Let (m, n) identify the square m from the left, and n from the bottom,
with each index ranging from 1 to N. Create an (N + 1) × (N + 1)
grid within the small square at (m, n) by drawing N evenly spaced
horizontal lines, and N evenly spaced vertical lines. Place a single
point at the intersection of horizontal line m and vertical line n.



chapter 1: functions on euclidian space 20

If R is any open rectangle around any point in [0, 1] × [0, 1], then
for high enough k our construction will result in a grid with small
squares some of which are contained in R. Our construction places
a point in each of these squares, and so R contains a point from A.
The coordinates of the points in A are rational, and so by the same
argument used in the previous problem, we know that R contains
points that are not in A. It follows that every point in [0, 1]× [0, 1] is a
boundary point. Finally, by construction we know that A contains at
most one point on each horizontal and vertical line.

1-18. If A ⊂ [0, 1] is the union of open intervals (ai, bi) such that
each rational number in (0, 1) is contained in some (ai, bi), show that
boundary A = [0, 1]− A.

The set A depends on the open intervals (ai, bi) that are assigned to Each (ai , bi) ⊂ [0, 1] because otherwise
we fail to have A ⊂ [0, 1].each rational number on (0, 1). For instance

• If each rational number is assigned to (0, 1), then A = (0, 1).

• Let γ ∈ (0, 1) be irrational, (e.g., equal to π/4). If rational numbers
less than γ are assigned to (0, γ), and rational numbers greater
than γ are assigned to (γ, 1), then A = (0, 1)− {γ}.

Spivak’s claim is that ∂A = [0, 1]− A in all cases, that is, regardless ∂A denotes the boundary of A.

of the assignment of open intervals to rational numbers. To see this,
note that:

i. If x ∈ A, then x is in the interior of A, because x is contained in an
open interval (ai, bi), all of whose elements belong to A.

ii. If x /∈ [0, 1], then x is in the exterior of A, because we can enclose
x in an open interval that does not intersect [0, 1].

iii. If x ∈ [0, 1]− A, we know that there are rationals arbitrarily close Any rational belongs to A because it is
contained in its associated open interval
(ai , bi) which belongs to A.

to x which belong to A. Any open interval that contains x (which
is not in A) will also contain these rationals (which are in A). It
follows that x ∈ ∂A.

In iii. we establish that x ∈ [0, 1] − A implies x ∈ ∂A. In i. and
ii. we establish that x /∈ [0, 1] − A implies x /∈ ∂A. It follows that
∂A = [0, 1]− A as desired.



chapter 1: functions on euclidian space 21

1-19.? If A is a closed set that contains every rational number r ∈
[0, 1], show that [0, 1] ⊂ A.

If A is a closed set that contains every rational number on [0, 1], then
the complement of A (denoted Ā) is an open set that contains no
rational numbers on [0, 1].

Suppose Ā includes an irrational x ∈ [0, 1]. Because Ā is open, it con-
tains an open interval containing x. But any open interval containing
x contains rational numbers on [0, 1], and Ā contains none of these. It
must be that Ā includes no irrational numbers on [0, 1].

We now know that Ā is an open set that contains no numbers on
[0, 1]. It follows that A is a closed set that contains all numbers on
[0, 1]. We write this as [0, 1] ⊂ A.

1-20. Prove the converse of Corollary 1-7: A compact subset of Rn is
closed and bounded (see also Problem 1-28).

If a set A is not closed, then the complement of A is not open, and Not closed is different than open. Sets
that are both closed and open are called
”clopen“.

we know that some point x in the complement of A exists with the
following property:

Every open rectangle containing x also contains some y ∈ A. (F)

Consider the open cover of A consisting of the complements of
closed rectangles containing x. Each of these anti-rectangles is open,
and together they cover every point in Rn except for x. Therefore
they cover A, because A consists of points in Rn except for x. Notice
that the union of any finite subset of these anti-rectangles leaves a gap
around x, within which we can place an open rectangle containing
x. From (F) we know that this open rectangle contains some y ∈ A,
and so our finite subset of anti-rectangles does not cover A. We chose
this subset arbitrarily, and so we’ve established that A is not compact.
Showing that A is not closed implies A is not compact is the same as
showing that any compact set is closed.

To show that any compact set A is bounded, we begin with an open
cover consisting of unit hypercubes centered at every point in Rn.
Because A is compact, it is covered by some finite number of these
unit hypercubes. A rectangle containing a finite number of unit hy-
percubes can be constructed by taking the minimum and maximum
of their coordinates in each dimension. This rectangle contains A and
so A is bounded.
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1-21.? (a) If A is closed and x /∈ A, prove that there is a number d > 0
such that |y− x| ≥ d for all y ∈ A.

If A is closed and x /∈ A, then x belongs to an open set (the com-
plement of A). An open rectangle exists that contains x and that is
wholly within the complement of A. If d is the shortest distance from
a face of this rectangle to x, then |y− x| ≥ d for all y outside of the
rectangle, in particular for y ∈ A.

(b) If A is closed, B is compact, and A ∩ B = ∅, prove that there is
d > 0 such that |y− x| ≥ d for all y ∈ A and x ∈ B. Hint: For each
b ∈ B find an open set U containing b such that this relation holds for
x ∈ U ∩ B.

In (a), we were working with a particular x. Here we need the same
outcome as (a), but true for all x ∈ B.

Associate to each x ∈ B the open sphere of radius d centered at x,
where d is provided by (a). See Problem 1-15 for certainty that the
sphere is open, and note that (a) ensures that the sphere has no in-
tersection with A. The set of these spheres over all x ∈ B is an open
cover of B, and because B is compact, a finite sub collection of these
spheres also covers B. The minimum of the associated d values satis-
fies the given problem.

(c) Give a counterexample in R2 if A and B are closed but neither is
compact.

A curve is a closed set in R2. A curve isn’t compact if it isn’t bounded
(i.e., doesn’t fit within some rectangle). Consider

A = {(x, y)|y = 0} and B = {(x, y)|y = e−x}.

By making x large enough, we can find points (x, 0) ∈ A and
(x, e−x) ∈ B that are arbitrarily close together.

-1 0 1 2 3
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1-22.? If U is open and C ⊂ U is compact, show that there is a com-
pact set D such that C ⊂ interior D and D ⊂ U.

The complement of U is closed and has no intersection with the
compact set C. From Problem 1-21, we know some d > 0 exists for
which |x− y| ≥ d for any x /∈ U and y ∈ C.

Consider the open cover of C consisting of open spheres of radius
d/2 centered at points in C. Because C is compact, some finite sub
collection of these spheres also covers C. Let D be the (finite) union
of these same spheres plus their boundaries. D is the union of finitely
many closed spheres, and so D is closed. Also, by construction we
have C ⊂ interior D and D ⊂ U.

U open
-U closedRI n

C compact

Some of the 
closed spheres 
comprising D.

To show that D is compact, we need to show that D is bounded.
Every point in D is within d/2 of C, which is compact and there-
fore bounded, (i.e., contained in a rectangle). Expanding a rectangle
bounding C in all dimensions by d results in a new rectangle that
bounds D.
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