Chapter 1: Functions on Euclidian Space

Notes on Spivak by Patch Kessler
December 29, 2018

These notes and observations document my progression through Michael Spivak's Calculus on Manifolds ${ }^{1}$. The idea is to document my learning in beautiful Tufte-EATEX style documents. Spivak's text is black, while all of my own writing is blue.

[^0]
Norm and Inner Product

Euclidean n-space \mathbb{R}^{n} is defined as the set of all n-tuples $\left(x^{1}, \ldots, x^{n}\right)$ of real numbers x^{i} (a " 1 -tuple of numbers" is just a number and $\mathbb{R}^{1}=\mathbb{R}$, the set of all real numbers). An element of \mathbb{R}^{n} is often called a point in \mathbb{R}^{n}, and $\mathbb{R}^{1}, \mathbb{R}^{2}, \mathbb{R}^{3}$ are often called the line, the plane, and space respectively. If x denotes an element of \mathbb{R}^{n}, then x is an n-tuple of numbers, the $\mathrm{i}^{\text {th }}$ one of which is denoted x^{i}; thus we can write

$$
x=\left(x^{1}, \ldots, x^{n}\right) .
$$

A point in \mathbb{R}^{n} is frequently also called a vector in \mathbb{R}^{n}, because \mathbb{R}^{n}, with $x+y=\left(x^{1}+y^{1}, \ldots, x^{n}+y^{n}\right)$ and $a x=\left(a x^{1}, \ldots, a x^{n}\right)$, as operations, is a vector space (over the real numbers, of dimension n). In this vector space there is the notion of the length of a vector x, usually called the norm $|x|$ of x and defined by $|x|=\sqrt{\left(x^{1}\right)^{2}+\cdots+\left(x^{n}\right)^{2}}$. If $n=1$, then $|x|$ is the usual absolute value of x. The relation between the norm and the vector space structure of \mathbb{R}^{n} is very important.

I often use bold characters for vectors, and deal with them as columns.

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
$$

This enables familiar mechanics and thought processes from linear algebra. I use subscripts rather than superscripts.
$\mathbf{1 - 1}$ Theorem. If $x, y \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$, then
(1) $|x| \geq 0$, and $|x|=0$ if and only if $x=0$.
(2) $\left|\sum_{i=1}^{n} x^{i} y^{i}\right| \leq|x| \cdot|y|$; equality holds if and only if x and y are linearly dependent.
(3) $|x+y| \leq|x|+|y|$.
(4) $|a x|=|a| \cdot|x|$.

Proof

(1) is left to the reader.
$|x| \geq 0$
The real number $|x|$ is constructed by a process, the final step of which is a mapping by the square root function. The square root function returns values on $[0, \infty)$.
$|\mathbf{x}|=0$ if and only if $\mathbf{x}=\mathbf{0}$
If $\mathbf{x}=\mathbf{0}$, then each x_{i} is zero, each x_{i}^{2} is zero, the sum of these is zero, and the square root of this sum is zero. Conversely if $|\mathbf{x}|=0$ then $x_{1}^{2}+\cdots+x_{n}^{2}=0$ by the definition of $\sqrt{ }$. The x_{i}^{2} terms are non-negative, and so if any of them are positive, then the sum of them is positive. But the sum is not positive, and so none of the x_{i}^{2} terms are positive. None of them are negative either, so they must all be zero. If x_{i}^{2} is zero then x_{i} is zero, and if all the $x_{i}{ }^{\prime}$ s are zero then $\mathbf{x}=0$.
(2) If x and y are linearly dependent, equality clearly holds. If not, then $\lambda y-x \neq 0$ for all $\lambda \in \mathbb{R}$, so

$$
\begin{aligned}
0<|\lambda y-x|^{2} & =\sum_{i=1}^{n}\left(\lambda y^{i}-x^{i}\right)^{2} \\
& =\lambda^{2} \sum_{i=1}^{n}\left(y^{i}\right)^{2}-2 \lambda \sum_{i=1}^{n} x^{i} y^{i}+\sum_{i=1}^{n}\left(x^{i}\right)^{2} .
\end{aligned}
$$

Therefore the right side is a quadratic equation in λ with no real solution, and its discriminant must be negative. Thus

$$
4\left(\sum_{i=1}^{n} x^{i} y^{i}\right)^{2}-4 \sum_{i=1}^{n}\left(x^{i}\right)^{2} \cdot \sum_{i=1}^{n}\left(y^{i}\right)^{2}<0 .
$$

(3) $|x+y|^{2}=\sum_{i=1}^{n}\left(x^{i}+y^{i}\right)^{2}$

$$
\begin{aligned}
& =\sum_{I=1}^{n}\left(x^{i}\right)^{2}+\sum_{I=1}^{n}\left(y^{i}\right)^{2}+2 \sum_{I=1}^{n} x^{i} y^{i} \\
& \leq|x|^{2}+|y|^{2}+2|x| \cdot|y| \quad \text { by (2) } \\
& =(|x|+|y|)^{2} .
\end{aligned}
$$

(4) $|a x|=\sqrt{\sum_{i=1}^{n}\left(a x^{i}\right)^{2}}=\sqrt{a^{2} \sum_{i=1}^{n}\left(x^{i}\right)^{2}}=|a| \cdot|x|$.

The quantity $\sum_{i=1}^{n} x^{i} y^{i}$ which appears in (2) is called the inner product of x and y and denoted $\langle x, y\rangle$. The most important properties of the inner product are the following.

1-2 Theorem. If x, x_{1}, x_{2} and y, y_{1}, y_{2} are vectors in \mathbb{R}^{n} and $z \in \mathbb{R}$, then
(1) $\langle x, y\rangle=\langle y, x\rangle$
(symmetry).
(2) $\langle a x, y\rangle=\langle x, a y\rangle=a\langle x, y\rangle$
(bilinearity).
$\left\langle x_{1}+x_{2}, y\right\rangle=\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle$
$\left\langle x, y_{1}+y_{2}\right\rangle=\left\langle x, y_{1}\right\rangle+\left\langle x, y_{2}\right\rangle$
(3) $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0$ if and (positive definiteness). only if $x=0$
(4) $|x|=\sqrt{\langle x, x\rangle}$.
(5) $4\langle x, y\rangle=|x+y|^{2}-|x-y|^{2} \quad \quad$ (polarization identity).

Proof

(1) $\langle x, y\rangle=\sum_{i=1}^{n} x^{i} y^{i}=\sum_{i=1}^{n} y^{i} x^{i}=\langle y, x\rangle$.
(2) By (1) it suffices to prove

$$
\begin{aligned}
\langle a x, y\rangle & =a\langle x, y\rangle \\
\left\langle x_{1}+x_{2}, y\right\rangle & =\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle
\end{aligned}
$$

These follow from the equations

$$
\begin{aligned}
\langle a x, y\rangle & =\sum_{i=1}^{n}\left(a x^{i}\right) y^{i}=a \sum_{i=1}^{n} x^{i} y^{i}=a\langle x, y\rangle, \\
\left\langle x_{1}+x_{2}, y\right\rangle & =\sum_{i=1}^{n}\left(x_{1}^{i}+x_{2}^{i}\right) y^{i}=\sum_{i=1}^{n} x_{1}^{i} y^{i}+\sum_{i=1}^{n} x_{2}^{i} y^{i} \\
& =\left\langle x_{1}, y\right\rangle+\left\langle x_{2}, y\right\rangle .
\end{aligned}
$$

(3) is left to the reader.
$\langle x, x\rangle$ is the sum of non-negative terms x_{i}^{2}, and so $\langle x, x\rangle \geq 0$.
If $x=0$, then from (1) of Theorem 1-1 we know that $|x|=0$, and from (4) that $\langle x, x\rangle=0$. Conversely if $\langle x, x\rangle=0$, then $|x|=0$ from (4), and from (1) of Theorem $1-1$ we know that $x=0$.
(4) is left to the reader.

Expand $\langle x, x\rangle$ according to its definition, and take the square root, to get $\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}$. This is the definition of $|x|$.
(5) $|x+y|^{2}-|x-y|^{2}$

$$
\begin{aligned}
& =\langle x+y, x+y\rangle-\langle x-y, x-y\rangle \text { by (4) } \\
& =\langle x, x\rangle+2\langle x, y\rangle+\langle y, y\rangle-(\langle x, x\rangle-2\langle x, y\rangle+\langle y, y\rangle) \\
& =4\langle x, y\rangle .
\end{aligned}
$$

We conclude this section with some important remarks about notation. The vector $(0, \ldots, 0)$ will usually be denoted simply 0 . The usual basis of \mathbb{R}^{n} is e_{1}, \ldots, e_{n}, where $e_{i}=(0, \ldots, 1, \ldots, 0)$, with the 1 in the i th place. If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is a linear transformation, the matrix of T with respect to the usual bases of \mathbb{R}^{n} and \mathbb{R}^{m} is the $m \times n$ matrix $A=\left(a_{i j}\right)$, where $T\left(e_{i}\right)=\sum_{j=1}^{m} a_{j i} e_{j}$ - the coefficients of $T\left(e_{i}\right)$ appear in the i th column of the matrix. If $S: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{p}$ has the $p \times m$ matrix B, then $S \circ T$ has the $p \times n$ matrix $B A$ [here $S \circ T(x)=S(T(x))$; most books on linear algebra denote $S \circ T$ simply $S T]$. To find $T(x)$ one computes the $m \times 1$ matrix

$$
\left(\begin{array}{c}
y^{1} \\
\vdots \\
y^{m}
\end{array}\right)=\left(\begin{array}{ccc}
a_{11}, & \ldots & , a_{1 n} \\
\vdots & & \vdots \\
a_{m 1}, & \ldots & , a_{m n}
\end{array}\right) \cdot\left(\begin{array}{c}
x^{1} \\
\vdots \\
x^{m}
\end{array}\right)
$$

then $T(x)=\left(y^{1}, \ldots, y^{m}\right)$. One notational convention greatly simplifies many formulas: if $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{m}$, then (x, y) denotes

$$
\left(x^{1}, \ldots, x^{n}, y^{1}, \ldots, y^{m}\right) \in \mathbb{R}^{n+m}
$$

Again, my thoughts are that it's simpler to deal with everything as columns in the first place. Also, for a clean and rigorous introduction to linear algebra, I recommend Linear Algebra Done Right ${ }^{2}$.

Problems

1-1. Prove that $|x| \leq \sum_{i=1}^{n}\left|x^{i}\right|$.
We can show this by writing \mathbf{x} with respect to the \mathbf{e}_{i} basis.

$$
\mathbf{x}=x_{1} \mathbf{e}_{1}+x_{1} \mathbf{e}_{1}+\ldots+x_{n} \mathbf{e}_{n}
$$

From Theorem 1-1 we know that $\left|x_{i} \mathbf{e}_{i}\right|=\left|x_{i}\right| \cdot\left|\mathbf{e}_{i}\right|=\left|x_{i}\right|$, and we also have the triangle inequality, which we now apply repeatedly

$$
\begin{aligned}
|\mathbf{x}| & =\left|x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}+\cdots+x_{n} \mathbf{e}_{n}\right| \\
& \leq\left|x_{1}\right|+\left|x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}+\cdots+x_{n} \mathbf{e}_{n}\right| \\
& \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3} \mathbf{e}_{3}+\cdots+x_{n} \mathbf{e}_{n}\right| \\
& \vdots \\
& \leq\left|x_{1}\right|+\left|x_{2}\right|+\left|x_{3}\right|+\cdots+\left|x_{n}\right|
\end{aligned}
$$

${ }^{2}$ Sheldon Axler. Linear Algebra Done Right. Springer, 1996. ISBN 0387982582

1-2. When does equality hold in Theorem 1-1 (3)? Hint: Re-examine the proof; the answer is not "when x and y are linearly dependent." When does $|\mathbf{x}+\mathbf{y}|=|\mathbf{x}|+|\mathbf{y}|$?

Start by writing \mathbf{y} as $\alpha \mathbf{x}+\mathbf{e}$, where $\alpha \in \mathbb{R}$ and \mathbf{e} is orthogonal to \mathbf{x}. Note that $|\mathbf{y}|^{2}=\alpha^{2}|\mathbf{x}|^{2}+|\mathbf{e}|^{2}$, and so

$$
\begin{equation*}
|\mathbf{y}| \geq \alpha|\mathbf{x}|, \tag{1}
\end{equation*}
$$

with equality when $\mathbf{e}=0$ and $\alpha>0 . \mathbf{e}=0$ is another way of saying that \mathbf{x} and \mathbf{y} are parallel, while $\alpha>0$ means that both vectors point in the same direction. Note that

$$
\begin{equation*}
|\mathbf{x}+\mathbf{y}|^{2}=\left(1+\alpha^{2}\right)|\mathbf{x}|^{2}+|\mathbf{e}|^{2}+2 \alpha|\mathbf{x}|^{2} \tag{2}
\end{equation*}
$$

while

$$
\begin{equation*}
(|\mathbf{x}|+|\mathbf{y}|)^{2}=\left(1+\alpha^{2}\right)|\mathbf{x}|^{2}+|\mathbf{e}|^{2}+2|\mathbf{x}||\mathbf{y}| . \tag{3}
\end{equation*}
$$

Combining (1), (2), and (3), we see that

$$
\begin{equation*}
|\mathbf{x}+\mathbf{y}|^{2} \leq(|\mathbf{x}|+|\mathbf{y}|)^{2} \tag{4}
\end{equation*}
$$

with equality under the same conditions as in (1). If $a, b \geq 0$ and $a^{2} \leq b^{2}$, then $a \leq b$, and so (4) implies the triangle inequality

$$
\begin{equation*}
|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}| . \tag{5}
\end{equation*}
$$

We get equality under the same conditions as (1), namely when \mathbf{x} and \mathbf{y} are parallel and pointing in the same direction. This proof of the triangle inequality (i.e., (3) from Theorem 1-1) is slightly different from Spivak, making it easier to understand the conditions under which equality holds.

1-3. Prove that $|x-y| \leq|x|+|y|$. When does this equality hold? This follows immediately from (5) in the previous exercise- simply replace \mathbf{y} with $-\mathbf{y}$. We get equality when \mathbf{x} and \mathbf{y} are parallel and pointing in opposite directions.

1-4. Prove that $||x|-|y|| \leq|x-y|$.
From (2) in Theorem 1-1, we know that $|\langle\mathbf{x}, \mathbf{y}\rangle| \leq|\mathbf{x}||\mathbf{y}|$. From this we get $\langle\mathbf{x}, \mathbf{y}\rangle \leq|\mathbf{x}||\mathbf{y}|$, as well as $-|\mathbf{x}||\mathbf{y}| \leq-\langle\mathbf{x}, \mathbf{y}\rangle$. Using this, we see that

$$
\begin{aligned}
\langle\mathbf{x}-\mathbf{y}, \mathbf{x}-\mathbf{y}\rangle & =|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2\langle\mathbf{x}, \mathbf{y}\rangle \\
& \geq|\mathbf{x}|^{2}+|\mathbf{y}|^{2}-2|\mathbf{x}||\mathbf{y}| \\
& =(|\mathbf{x}|-|\mathbf{y}|)^{2}
\end{aligned}
$$

Thus $|\mathbf{x}-\mathbf{y}|^{2} \geq(|\mathbf{x}|-|\mathbf{y}|)^{2}$, which implies $|\mathbf{x}-\mathbf{y}| \geq \| \mathbf{x}|-|\mathbf{y}||$.

1-5. The quantity $|y-x|$ is called the distance between x and y. Prove and interpret geometrically the "triangle inequality": $|z-x| \leq$ $|z-y|+|y-x|$.
From Problem 1-3, we know that $|\mathbf{u}-\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|$. Substituting in $\mathbf{u}=\mathbf{z}-\mathbf{y}$ and $\mathbf{v}=\mathbf{x}-\mathbf{y}$ gives the desired result. A geometrical interpretation is to think of \mathbf{x}, \mathbf{y}, and \mathbf{z} as the vertices of a triangle. The inequality establishes that the length of one side is always less than or equal to the sum of the lengths of the other two sides.

1-6. Let f and g be integrable on $[a, b]$.
(a) Prove that $\left|\int_{a}^{b} f \cdot g\right| \leq\left(\int_{a}^{b} f^{2}\right)^{\frac{1}{2}} \cdot\left(\int_{a}^{b} g^{2}\right)^{\frac{1}{2}}$. Hint: Consider separately the cases $0=\int_{a}^{b}(f-\lambda g)^{2}$ for some $\lambda \in \mathbb{R}$ and $0<\int_{a}^{b}(f-\lambda g)^{2}$ for all $\lambda \in \mathbb{R}$.
If we had established (2) in Theorem 1-1 for abstract vector spaces, we could prove this result by showing that the integrable functions on $[a, b]$ form a vector space, and that $\int_{a}^{b} f \cdot g$ is an inner product on this space. Instead of this, we stick with the scope of Spivak's development and follow his hint.

We wish to show

$$
\begin{equation*}
\left|\int_{a}^{b} f g\right| \leq\left(\int_{a}^{b} f^{2}\right)^{\frac{1}{2}} \cdot\left(\int_{a}^{b} g^{2}\right)^{\frac{1}{2}} \tag{6}
\end{equation*}
$$

Let $F(\lambda)=\int_{a}^{b}(f-\lambda g)^{2}$. Note that $F(\lambda) \geq 0$, because the integrand is never negative (\star). Also, note that $F(\lambda)=A \lambda^{2}+B \lambda+C$, where

$$
A=\int_{a}^{b} g^{2}, \quad B=-2 \int_{a}^{b} f g, \quad \text { and } \quad C=\int_{a}^{b} f^{2} .
$$

If $A=0$, then because of (\star), we also have $B=0$, and (6) is satisfied with both sides equal to zero.

If $A \neq 0$ and F has no roots, then the discriminant $B^{2}-4 A C$ is negative. Substituting in terms, we get

$$
4\left(\int_{a}^{b} f g\right)^{2}<4\left(\int_{a}^{b} f^{2}\right)\left(\int_{a}^{b} g^{2}\right)
$$

which leads to (6) as a strict inequality

If $A \neq 0$ and $F=0$ for some λ, then from (\star) we know that $F_{\min }=0$ as well. Because $A>0, F_{\min }$ is well defined, with value

$$
F_{\min }=F\left(-\frac{B}{2 A}\right)
$$

Setting this equal to zero, we obtain $B^{2}=4 A C$, which leads to (6) as an equality.
(b) If equality holds, must $f=\lambda g$ for some $\lambda \in \mathbb{R}$? What if f and g are continuous?
From (a), we know that equality holds if $\int_{a}^{b} g^{2}=0$. Because of this, $f=\lambda g$ is not necessary for equality, even if f and g are continuous. For instance, let $f=\sin x, \lambda=27$, and $g=0$.

If we restrict ourselves to $\int_{a}^{b} g^{2}>0$, then from (a) we know that equality holds if $\int_{a}^{b}(f-\lambda g)^{2}=0$ for some λ.

These different cases can be combined into the single condition of linear dependence. For $f(x)$ and $g(x)$ to be linearly dependent, some linear combination of them must equal zero. That is, we must be able to find $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ such that

$$
\begin{equation*}
\lambda_{1} f+\lambda_{2} g=0 \tag{7}
\end{equation*}
$$

The condition we require is $\int_{a}^{b}\left(\lambda_{1} f+\lambda_{2} g\right)^{2}=0$. This is weaker than (7) because the integrand can be non zero at discrete points. This distinction goes away if f and g are continuous.
(c) Show that Theorem 1-1 (2) is a special case of (a).

Theorem 1-1 (2) is that $|\langle\mathbf{u}, \mathbf{v}\rangle| \leq|\mathbf{u}||\mathbf{v}|$, with equality if and only if \mathbf{u} and \mathbf{v} are linearly dependent.

To get this from our work here, let f and g be piecewise constant, with values that equal the components of vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$. For instance, let $f(x)=u_{i}$ and $g(x)=v_{i}$ for $x \in(i-1, i)$. This construction gives us

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\int_{0}^{n} f(x) \cdot g(x) d x .
$$

The desired result $|\langle\mathbf{u}, \mathbf{v}\rangle| \leq|\mathbf{u}||\mathbf{v}|$ then follows from (6). From (b), equality occurs when \mathbf{u} and \mathbf{v} are linearly dependent.

1-7. A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is norm preserving if $|T(x)|=|x|$, and inner product preserving if $\langle T x, T y\rangle=\langle x, y\rangle$.
(a) Prove that T is norm preserving if and only if T is inner product preserving.
If T is norm preserving then T preserves inner products.

$$
\begin{aligned}
\langle T x, T y\rangle & =\frac{1}{4}\left(|T x+T y|^{2}-|T x-T y|^{2}\right) & & \text { (polarization identity) } \\
& =\frac{1}{4}\left(|T(x+y)|^{2}-|T(x-y)|^{2}\right) & & \text { (linearity) } \\
& =\frac{1}{4}\left(|x+y|^{2}-|x-y|^{2}\right) & & \text { (norm preserving) } \\
& =\langle x, y\rangle & & \text { (polarization identity) }
\end{aligned}
$$

Conversely, if T preserves inner products, then

$$
|T x|=\sqrt{\langle T x, T y\rangle}=\sqrt{\langle x, x\rangle}=|x|,
$$

and so T is norm preserving.
(b) Prove that such a linear transformation T is $1-1$ and T^{-1} is of the same sort.
T is $1-1$ if $x \neq y$ implies $T x \neq T y$. This is equivalent to $T x=T y$ implying $x=y$, which we now show.

$$
\begin{aligned}
T x=T y & \Longrightarrow T(x-y)=0 \\
& \Longrightarrow|T(x-y)|=0 \\
& \Longrightarrow|x-y|=0 \\
& \Longrightarrow x-y=0 \\
& \Longrightarrow x=y
\end{aligned}
$$

We've used the linearity of T, the fact that $|\mathbf{u}|=0$ if and only if $\mathbf{u}=\mathbf{0}$ (from Theorem 1-1), as well as the hypothesis that T is norm preserving.

The inverse mapping T^{-1} satisfies $T\left(T^{-1} x\right)=x$. As a result,

$$
T^{-1} x=T^{-1} y \Longrightarrow T\left(T^{-1} x\right)=T\left(T^{-1} y\right) \Longrightarrow x=y,
$$

and so T^{-1} is $1-1$ as desired. The question of whether T^{-1} exists in the first place follows from linear algebra. If $T \in L(V, W)$, then

$$
\operatorname{dim} V=\operatorname{dim} \text { null } T+\operatorname{dim} \text { range } T \text {. }
$$

In our case, $\operatorname{dim} V=n$, and because T is norm preserving, dim null $T=0$. It follows that dim range $T=n$, and so T is onto. We already know that T is $1-1$, and so it follows that T is invertible.

1-8. If $x, y \in \mathbb{R}^{n}$ are non-zero, the angle between x and y, denoted $\angle(x, y)$, is defined as $\arccos (\langle x, y\rangle /|x| \cdot|y|)$, which makes sense by Theorem 1-1 (2). The linear transformation T is angle preserving if T is $1-1$, and for $x, y \neq 0$ we have $\angle(T x, T y)=\angle(x, y)$.
(a) Prove that if T is norm preserving, then T is angle preserving. If T is norm preserving, then from the previous problem T is also inner product preserving. It follows that T is angle preserving, because the angle is defined in terms of norms and inner products.
(b) If there is a basis x_{1}, \ldots, x_{n} of \mathbb{R}^{n} and numbers $\lambda_{1}, \ldots, \lambda_{n}$ such that $T x_{i}=\lambda_{i} x_{i}$, prove that T is angle preserving if and only if all $\left|\lambda_{i}\right|$ are equal.

Let $A(a, b)$ be the inner product of the unit vectors pointing in the directions of a and b.

$$
A(a, b)=\frac{\langle a, b\rangle}{|a||b|} .
$$

Note that $\angle(a, b)=\arccos (A(a, b))$, and that $\angle(a, b)=\angle(c, d)$ if and only if $A(a, b)=A(c, d)$. From the polarization identity

$$
4\langle x+y, x-y\rangle=|x|^{2}-|y|^{2},
$$

we have

$$
A(x+y, x-y)=\frac{|x|^{2}-|y|^{2}}{4|x+y||x-y|} .
$$

Let e_{i} be the unit vector in the direction of each x_{i}, (i.e., $\left.e_{i}=\frac{x_{i}}{\mid x_{i}}\right)$. Then $\left|e_{i}\right|=1$, and so

$$
A\left(e_{i}+e_{j}, e_{i}-e_{j}\right)=\frac{\left|e_{i}\right|^{2}-\left|e_{j}\right|^{2}}{4\left|e_{i}+e_{j}\right|\left|e_{i}-e_{j}\right|}=0 .
$$

However, we also have $T e_{i}=\lambda_{i} e_{i}$, and so if $\left|\lambda_{i}\right| \neq\left|\lambda_{j}\right|$, then

$$
A\left(T\left(e_{i}+e_{j}\right), T\left(e_{i}-e_{j}\right)\right)=\frac{\left|\lambda_{i}\right|^{2}-\left|\lambda_{j}\right|^{2}}{4\left|\lambda_{i} e_{i}+\lambda_{j} e_{j}\right|\left|\lambda_{i} e_{i}-\lambda_{j} e_{j}\right|} \neq 0
$$

Thus $\left|\lambda_{i}\right| \neq\left|\lambda_{j}\right|$ causes T to not be angle preserving.
The other direction as stated is false. That is, all $\left|\lambda_{i}\right|$'s being equal does not make T angle preserving. For instance, consider \mathbb{R}^{2}, with basis given by $x_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$ and $x_{2}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$. Suppose $T x_{1}=x_{1}$, and $T x_{2}=-x_{2}$. It's easy to check that $\angle\left(x_{1}, x_{2}\right)=\pi / 4$, while $\angle\left(T x_{1}, T x_{2}\right)=3 \pi / 4$.

For the other direction to be true, we need all the λ_{i} to be equal (not just their absolute values). If all the λ_{i} are equal, say to λ, then for any vector $a \in \mathbb{R}^{n}$ we have $T a=\lambda a$. As a result, for any two vectors $a, b \in \mathbb{R}^{n}$, we have

$$
A(T a, T b)=\frac{\langle T a, T b\rangle}{|T a||T b|}=\frac{\langle\lambda a, \lambda b\rangle}{|\lambda a||\lambda b|}=\frac{\lambda^{2}}{|\lambda|^{2}} \cdot \frac{\langle a, b\rangle}{|a||b|}=A(a, b),
$$

which establishes that T is angle preserving.
(c) What are all angle preserving $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$?
T is angle preserving if and only if there are orthonormal bases $\left\{e_{i}\right\}$ and $\left\{u_{i}\right\}$ of \mathbb{R}^{n}, and some positive $\lambda \in \mathbb{R}$ such that for all i

$$
\begin{equation*}
T e_{i}=\lambda u_{i} . \tag{8}
\end{equation*}
$$

Let T be angle preserving and let $\left\{e_{i}\right\}$ be any orthonormal basis of \mathbb{R}^{n}. Let $\lambda_{i}=\left|T e_{i}\right|$ and let u_{i} be the unit vector in the direction of $T e_{i}$. All the λ_{i} 's are positive, and so we know from the same argument that we used in our answer to (b) that all the λ_{i} 's are equal. The orthogonality of the $u_{i}{ }^{\prime}$ s is immediate, because if u_{i} and u_{j} are not orthogonal, then $A\left(u_{i}, u_{j}\right) \neq 0$. However $A\left(e_{i}, e_{j}\right)=0$, and so this violates the hypothesis on T. Thus we started with an angle preserving T and arrived at (8).

To show that (8) implies angle preservation by T, notice that $\langle T a, T b\rangle=\lambda^{2}\langle a, b\rangle$ for any two vectors $a, b \in \mathbb{R}^{n}$. Also, notice that $|T a|=\lambda|a|$ and $|T b|=\lambda|b|$. This gives us $A(T a, T b)=A(a, b)$, establishing that T preserves angles.

1-9. If $0 \leq \theta<\pi$, let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ have the matrix $\left(\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$. Show that T is angle preserving and if $x \neq 0$, then $\angle(x, T x)=\theta$. T satisfies the hypothesis of (c) from the previous problem, with $\left\{e_{i}\right\}$ equal to the standard basis, $u_{1}=[\cos \theta-\sin \theta]^{T}, u_{2}=[\sin \theta \cos \theta]^{T}$, and $\lambda=1$.

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
\cos \theta \\
-\sin \theta
\end{array}\right] \text { and } T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
\sin \theta \\
\cos \theta
\end{array}\right] .
$$

It follows from (c) of the previous problem that T is angle preserving.
To show that $\angle(x, T x)=\theta$ for nonzero $x=x_{1} e_{1}+x_{2} e_{2}$, note that $|x|^{2}=|T x|^{2}=x_{1}^{2}+x_{2}^{2}$, and that $\langle x, T x\rangle=\left(x_{1}^{2}+x_{2}^{2}\right) \cos \theta$. Therefore

$$
\frac{\langle x, T x\rangle}{|x||T x|}=\cos \theta .
$$

From this, we get $\angle(x, T x)=\theta$ as desired.
$\mathbf{1 - 1 0} .^{\star}$ If $T: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ is a linear transformation, show that there is a number M such that $|T(h)| \leq M|h|$ for $h \in \mathbb{R}^{m}$. Hint: Estimate $|T(h)|$ in terms of $|h|$ and the entries in the matrix of T.
We know from the singular value decomposition that associated with every $T: \mathbb{R}^{m} \longrightarrow \mathbb{R}^{n}$ is an orthonormal basis $\left\{u_{i}\right\}$ of \mathbb{R}^{m}, an orthonormal basis $\left\{v_{i}\right\}$ of \mathbb{R}^{n}, and a collection of positive real singular values σ_{i} such that $T u_{i}=\sigma_{i} v_{i}$, for i ranging from 1 to $\min (m, n)$. The σ_{i} are the square roots of the eigenvalues of $T T^{T}$, and so come from a polynomial equation in the entries of the matrix of T. We can use the largest singular value $\sigma_{\max }$ as the M requested in the problem statement.

We use the same symbol T for the linear function and for the matrix of this linear function with respect to the standard basis.

The singular value decomposition is like a Ferrari. It's a beautiful machine, and it'll get you to the corner store, however so will walking or riding a bike. There's an aesthetic appeal to tackling problems in the cleanest and simplest way possible, and so we try this again. The i th component of $T h$ is given by

$$
g_{i}=T_{i 1} h_{1}+T_{i 2} h_{2}+\ldots+T_{i m} h_{m}
$$

We'd like to place a bound on $\sqrt{g_{1}^{2}+g_{2}^{2}+\ldots+g_{n}^{2}}$. A key observation is that for any collection of non-negative a_{i}, we have

$$
\begin{equation*}
\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2} \leq 2 n\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right) \tag{9}
\end{equation*}
$$

To see this, order and relabel the a_{i} 's so that $a_{1} \geq a_{2} \geq \ldots \geq a_{n} \geq 0$. Then write out the terms of $\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}$ against a grid.
 terms around the grid, getting a nesting of right angled arrangements of terms all with the same value. This results in $2 n-1$ diagonals, like the one outlined in blue, each of which sum to $a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}$. We use (9) because it's true, and cleaner than including the -1 . If $T_{\max }$ is the largest of the absolute values of the entries of T, then

$$
\begin{aligned}
g_{i}^{2} & =\left(T_{i 1} h_{1}+T_{i 2} h_{2}+\ldots+T_{i m} h_{m}\right)^{2} \\
& \leq\left(\left|T_{i 1} h_{1}\right|+\left|T_{i 2} h_{2}\right|+\ldots+\left|T_{i m} h_{m}\right|\right)^{2} \\
& \leq T_{\max }^{2}\left(\left|h_{1}\right|+\left|h_{2}\right|+\ldots+\left|h_{m}\right|\right)^{2} \\
& \leq T_{\max }^{2} 2 m\left(h_{1}^{2}+h_{2}^{2}+\ldots+h_{m}^{2}\right) \\
& =T_{\max }^{2} 2 m|h|^{2}
\end{aligned}
$$

Summing all n of the $g_{i}{ }^{\prime}$ s, we see that $|T h|$ is bounded by $M|h|$ where

$$
M=T_{\max } \sqrt{2 m n}
$$

1-11. If $x, y \in \mathbb{R}^{n}$ and $z, w \in \mathbb{R}^{m}$, show that $\langle(x, z),(y, w)\rangle=\langle x, y\rangle+$ $\langle z, w\rangle$ and $|(x, z)|=\sqrt{|x|^{2}+|z|^{2}}$. Note that (x, z) and (y, w) denote points in \mathbb{R}^{n+m}.
We can see that $\langle(x, z),(y, w)\rangle=\langle x, y\rangle+\langle z, w\rangle$ by expanding $\langle(x, z),(y, w)\rangle$ according to the definition of the inner product.

$$
\begin{aligned}
\langle(x, z),(y, w)\rangle= & x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n} \\
& +z_{1} w_{1}+z_{2} w_{2}+\ldots+z_{m} w_{m}
\end{aligned}
$$

The first and second rows on the right equal $\langle x, y\rangle$ and $\langle z, w\rangle$ respectively, again by the definition of the inner product. Using this result, observe that

$$
\begin{aligned}
|(x, z)| & =\sqrt{\langle(x, z),(x, z)\rangle} \\
& =\sqrt{\langle x, x\rangle+\langle z, z\rangle} \\
& =\sqrt{|x|^{2}+|z|^{2}}
\end{aligned}
$$

$\mathbf{1 - 1 2 .}{ }^{\star}$ Let $\left(\mathbb{R}^{n}\right)^{\star}$ denote the dual space of the vector space \mathbb{R}^{n}. If $x \in \mathbb{R}^{n}$, define $\varphi_{x} \in\left(\mathbb{R}^{n}\right)^{\star}$ by $\varphi_{x}(y)=\langle x, y\rangle$. Define $T: \mathbb{R}^{n} \longrightarrow\left(\mathbb{R}^{n}\right)^{\star}$ by $T(x)=\varphi_{x}$. Show that T is a 1-1 linear transformation.
The dual space of \mathbb{R}^{n} is the space of linear mappings from \mathbb{R}^{n} to \mathbb{R}. In his prescription of $\varphi_{x}(y)$, Spivak constructs such mappings from vectors in \mathbb{R}^{n}. We need to show that this prescription is both linear and $1-1$.

The linearity of T follows from the linearity of the inner product used in the definition of $\varphi_{x}(y)$. If $a, b \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$, then

$$
\begin{aligned}
\varphi_{a+b}(y) & =\langle a+b, y\rangle \\
& =\langle a, y\rangle+\langle b, y\rangle \\
& =\varphi_{a}(y)+\varphi_{b}(y)
\end{aligned}
$$

and

$$
\begin{aligned}
\varphi_{\alpha a}(y) & =\langle\alpha a, y\rangle \\
& =\alpha\langle a, y\rangle \\
& =\alpha \varphi_{a}(y)
\end{aligned}
$$

For T to be 1-1, we need to show that for any two unequal vectors $a, b \in \mathbb{R}^{n}$, we have $\varphi_{a}(x) \neq \varphi_{b}(x)$ for some $x \in \mathbb{R}^{n}$. Note that

$$
\varphi_{a}(x)-\varphi_{b}(x)=\langle a, x\rangle-\langle b, x\rangle=\langle a-b, x\rangle
$$

Picking $x=a-b$ causes $\varphi_{a}(x)-\varphi_{b}(x)=|a-b|^{2}$, which we know is non zero because $a \neq b$. (See (1) of Theorem 1-1.)

We might as well also show that T is onto. Let φ be any linear map from \mathbb{R}^{n} to \mathbb{R}. Let $\left\{e_{i}\right\}$ be an orthonormal basis for \mathbb{R}^{n}, and note that for any vector $x=\sum_{i=1}^{n} x_{i} e_{i}$,

$$
\varphi(x)=\sum_{i=1}^{n} x_{i} \varphi\left(e_{i}\right)
$$

Define $a=\sum_{i=1}^{n} \varphi\left(e_{i}\right) e_{i}$, and note that

$$
\langle a, x\rangle=\sum_{i=1}^{n} x_{i} \varphi\left(e_{i}\right) .
$$

It follows that $\varphi(x)=\langle a, x\rangle$, and so T is onto.
1-13.* If $x, y \in \mathbb{R}^{n}$, then x and y are called perpendicular (or orthogonal) if $\langle x, y\rangle=0$. If x and y are perpendicular, prove that $|x+y|^{2}=|x|^{2}+|y|^{2}$.
We are proving the Pythagorean Theorem in arbitrary dimensions!

$$
\begin{aligned}
|x+y|^{2} & =\langle x+y, x+y\rangle \\
& =\langle x, x\rangle+\langle y, y\rangle+2\langle x, y\rangle \\
& =\langle x, x\rangle+\langle y, y\rangle \\
& =|x|^{2}+|y|^{2}
\end{aligned}
$$

References

Sheldon Axler. Linear Algebra Done Right. Springer, 1996. ISBN 0387982582.

Michael Spivak. Calculus on Manifolds. Benjamin Cummings, 1965. ISBN 0846590219.

[^0]: ${ }^{1}$ Michael Spivak. Calculus on Manifolds. Benjamin Cummings, 1965. ISBN
 o846590219

