Chapter 1: Functions on Euclidian Space

Notes on Spivak by Patch Kessler

December 29, 2018

These notes and observations document my progression through Michael Spivak's Calculus on Manifolds¹. The idea is to document my learning in beautiful Tufte-IATEX style documents. Spivak's text is black, while all of my own writing is blue.

Norm and Inner Product

Euclidean *n*-space \mathbb{R}^n is defined as the set of all *n*-tuples $(x^1, ..., x^n)$ of real numbers x^i (a "1-tuple of numbers" is just a number and $\mathbb{R}^1 = \mathbb{R}$, the set of all real numbers). An element of \mathbb{R}^n is often called a point in \mathbb{R}^n , and \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 are often called the line, the plane, and space respectively. If *x* denotes an element of \mathbb{R}^n , then *x* is an *n*-tuple of numbers, the *i*th one of which is denoted x^i ; thus we can write

$$x = (x^1, ..., x^n).$$

A point in \mathbb{R}^n is frequently also called a vector in \mathbb{R}^n , because \mathbb{R}^n , with $x + y = (x^1 + y^1, ..., x^n + y^n)$ and $ax = (ax^1, ..., ax^n)$, as operations, *is* a vector space (over the real numbers, of dimension *n*). In this vector space there is the notion of the length of a vector *x*, usually called the **norm** |x| of *x* and defined by $|x| = \sqrt{(x^1)^2 + \cdots + (x^n)^2}$. If n = 1, then |x| is the usual absolute value of *x*. The relation between the norm and the vector space structure of \mathbb{R}^n is very important.

I often use bold characters for vectors, and deal with them as columns.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

This enables familiar mechanics and thought processes from linear algebra. I use subscripts rather than superscripts.

¹ Michael Spivak. *Calculus on Manifolds*. Benjamin Cummings, 1965. ISBN 0846590219 **1-1 Theorem.** If $x, y \in \mathbb{R}^n$ and $a \in \mathbb{R}$, then

- (1) $|x| \ge 0$, and |x| = 0 if and only if x = 0.
- (2) $|\sum_{i=1}^{n} x^{i} y^{i}| \le |x| \cdot |y|$; equality holds if and only if x and y are linearly dependent.
- (3) $|x+y| \le |x|+|y|$.
- (4) $|ax| = |a| \cdot |x|$.

Proof

(1) is left to the reader.

 $|\mathbf{x}| \ge 0$

The real number |x| is constructed by a process, the final step of which is a mapping by the square root function. The square root function returns values on $[0, \infty)$. \Box

 $|\mathbf{x}| = 0$ if and only if $\mathbf{x} = \mathbf{0}$

If $\mathbf{x} = \mathbf{0}$, then each x_i is zero, each x_i^2 is zero, the sum of these is zero, and the square root of this sum is zero. Conversely if $|\mathbf{x}| = 0$ then $x_1^2 + \cdots + x_n^2 = 0$ by the definition of $\sqrt{-}$. The x_i^2 terms are non-negative, and so if any of them are positive, then the sum of them is positive. But the sum is not positive, and so none of the x_i^2 terms are positive. None of them are negative either, so they must all be zero. If x_i^2 is zero then x_i is zero, and if all the x_i 's are zero then $\mathbf{x} = \mathbf{0}$. \Box

(2) If *x* and *y* are linearly dependent, equality clearly holds. If not, then $\lambda y - x \neq 0$ for all $\lambda \in \mathbb{R}$, so

$$0 < |\lambda y - x|^{2} = \sum_{i=1}^{n} (\lambda y^{i} - x^{i})^{2}$$

= $\lambda^{2} \sum_{i=1}^{n} (y^{i})^{2} - 2\lambda \sum_{i=1}^{n} x^{i} y^{i} + \sum_{i=1}^{n} (x^{i})^{2}.$

Therefore the right side is a quadratic equation in λ with no real solution, and its discriminant must be negative. Thus

$$4\left(\sum_{i=1}^{n} x^{i}y^{i}\right)^{2} - 4\sum_{i=1}^{n} (x^{i})^{2} \cdot \sum_{i=1}^{n} (y^{i})^{2} < 0.$$
(3) $|x+y|^{2} = \sum_{i=1}^{n} (x^{i}+y^{i})^{2}$

$$= \sum_{I=1}^{n} (x^{i})^{2} + \sum_{I=1}^{n} (y^{i})^{2} + 2\sum_{I=1}^{n} x^{i}y^{i}$$

$$\leq |x|^{2} + |y|^{2} + 2|x| \cdot |y| \quad \text{by (2)}$$

$$= (|x| + |y|)^{2}.$$

(4)
$$|ax| = \sqrt{\sum_{i=1}^{n} (ax^i)^2} = \sqrt{a^2 \sum_{i=1}^{n} (x^i)^2} = |a| \cdot |x|.$$

The quantity $\sum_{i=1}^{n} x^{i}y^{i}$ which appears in (2) is called the **inner product** of *x* and *y* and denoted $\langle x, y \rangle$. The most important properties of the inner product are the following.

1-2 Theorem. If x, x_1 , x_2 and y, y_1 , y_2 are vectors in \mathbb{R}^n and $z \in \mathbb{R}$, then

- (1) $\langle x, y \rangle = \langle y, x \rangle$ (symmetry). (2) $\langle ax, y \rangle = \langle x, ay \rangle = a \langle x, y \rangle$ (bilinearity). $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$
- $\langle x, y_1 + y_2 \rangle = \langle x, y_1 \rangle + \langle x, y_2 \rangle$ (3) $\langle x, x \rangle \ge 0$, and $\langle x, x \rangle = 0$ if and (positive definiteness). only if x = 0

(4)
$$|x| = \sqrt{\langle x, x \rangle}.$$

(5) $4\langle x, y \rangle = |x + y|^2 - |x - y|^2$ (polarization identity).

Proof

- (1) $\langle x, y \rangle = \sum_{i=1}^{n} x^{i} y^{i} = \sum_{i=1}^{n} y^{i} x^{i} = \langle y, x \rangle.$
- (2) By (1) it suffices to prove

$$\langle ax, y \rangle = a \langle x, y \rangle,$$

 $\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$

These follow from the equations

$$\langle ax, y \rangle = \sum_{i=1}^{n} (ax^{i})y^{i} = a \sum_{i=1}^{n} x^{i}y^{i} = a \langle x, y \rangle,$$
$$\langle x_{1} + x_{2}, y \rangle = \sum_{i=1}^{n} (x_{1}^{i} + x_{2}^{i})y^{i} = \sum_{i=1}^{n} x_{1}^{i}y^{i} + \sum_{i=1}^{n} x_{2}^{i}y^{i}$$
$$= \langle x_{1}, y \rangle + \langle x_{2}, y \rangle.$$

(3) is left to the reader.

 $\langle x, x \rangle$ is the sum of non-negative terms x_i^2 , and so $\langle x, x \rangle \ge 0$. If x = 0, then from (1) of Theorem 1-1 we know that |x| = 0, and from (4) that $\langle x, x \rangle = 0$. Conversely if $\langle x, x \rangle = 0$, then |x| = 0 from (4), and from (1) of Theorem 1-1 we know that x = 0. \Box

(4) is left to the reader.

Expand $\langle x, x \rangle$ according to its definition, and take the square root, to get $\sqrt{x_1^2 + \cdots + x_n^2}$. This is the definition of |x|. \Box

(5)
$$|x+y|^2 - |x-y|^2$$

$$= \langle x+y, x+y \rangle - \langle x-y, x-y \rangle \text{ by (4)}$$

$$= \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle - (\langle x, x \rangle - 2 \langle x, y \rangle + \langle y, y \rangle)$$

$$= 4 \langle x, y \rangle. \square$$

We conclude this section with some important remarks about notation. The vector (0, ..., 0) will usually be denoted simply 0. The **usual basis** of \mathbb{R}^n is $e_1, ..., e_n$, where $e_i = (0, ..., 1, ..., 0)$, with the 1 in the *i*th place. If $T : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a linear transformation, the matrix of T with respect to the usual bases of \mathbb{R}^n and \mathbb{R}^m is the $m \times n$ matrix $A = (a_{ij})$, where $T(e_i) = \sum_{j=1}^m a_{jj}e_j$ - the coefficients of $T(e_i)$ appear in the *i*th column of the matrix. If $S : \mathbb{R}^m \longrightarrow \mathbb{R}^p$ has the $p \times m$ matrix B, then $S \circ T$ has the $p \times n$ matrix BA [here $S \circ T(x) = S(T(x))$; most books on linear algebra denote $S \circ T$ simply ST]. To find T(x) one computes the $m \times 1$ matrix

$$\begin{pmatrix} y^1 \\ \vdots \\ y^m \end{pmatrix} = \begin{pmatrix} a_{11}, & \dots & , a_{1n} \\ \vdots & & \vdots \\ a_{m1}, & \dots & , a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x^1 \\ \vdots \\ x^m \end{pmatrix};$$

then $T(x) = (y^1, ..., y^m)$. One notational convention greatly simplifies many formulas: if $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$, then (x, y) denotes

$$(x^1, ..., x^n, y^1, ..., y^m) \in \mathbb{R}^{n+m}.$$

Again, my thoughts are that it's simpler to deal with everything as columns in the first place. Also, for a clean and rigorous introduction to linear algebra, I recommend Linear Algebra Done Right².

Problems

1-1. Prove that $|x| \leq \sum_{i=1}^{n} |x^{i}|$. We can show this by writing **x** with respect to the **e**_{*i*} basis.

$$\mathbf{x} = x_1 \mathbf{e}_1 + x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n$$

From Theorem 1-1 we know that $|x_i \mathbf{e}_i| = |x_i| \cdot |\mathbf{e}_i| = |x_i|$, and we also have the triangle inequality, which we now apply repeatedly

$$\begin{aligned} \mathbf{x} &| = |x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 + \dots + x_n \mathbf{e}_n| \\ &\leq |x_1| + |x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 + \dots + x_n \mathbf{e}_n| \\ &\leq |x_1| + |x_2| + |x_3 \mathbf{e}_3 + \dots + x_n \mathbf{e}_n| \\ &\vdots \\ &\leq |x_1| + |x_2| + |x_3| + \dots + |x_n| \end{aligned}$$

² Sheldon Axler. *Linear Algebra Done Right*. Springer, 1996. ISBN 0387982582 **1-2.** When does equality hold in Theorem 1-1 (3)? *Hint*: Re-examine the proof; the answer is not "when *x* and *y* are linearly dependent." When does $|\mathbf{x} + \mathbf{y}| = |\mathbf{x}| + |\mathbf{y}|$?

Start by writing **y** as $\alpha \mathbf{x} + \mathbf{e}$, where $\alpha \in \mathbb{R}$ and **e** is orthogonal to **x**. Note that $|\mathbf{y}|^2 = \alpha^2 |\mathbf{x}|^2 + |\mathbf{e}|^2$, and so

$$|\mathbf{y}| \ge \alpha |\mathbf{x}|,\tag{1}$$

with equality when $\mathbf{e} = \mathbf{0}$ and $\alpha > 0$. $\mathbf{e} = \mathbf{0}$ is another way of saying that **x** and **y** are parallel, while $\alpha > 0$ means that both vectors point in the same direction. Note that

$$|\mathbf{x} + \mathbf{y}|^2 = (1 + \alpha^2)|\mathbf{x}|^2 + |\mathbf{e}|^2 + 2\alpha|\mathbf{x}|^2,$$
 (2)

while

$$(|\mathbf{x}| + |\mathbf{y}|)^2 = (1 + \alpha^2)|\mathbf{x}|^2 + |\mathbf{e}|^2 + 2|\mathbf{x}||\mathbf{y}|.$$
 (3)

Combining (1), (2), and (3), we see that

$$|\mathbf{x} + \mathbf{y}|^2 \le (|\mathbf{x}| + |\mathbf{y}|)^2,$$
 (4)

with equality under the same conditions as in (1). If $a, b \ge 0$ and $a^2 \le b^2$, then $a \le b$, and so (4) implies the triangle inequality

$$|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|. \tag{5}$$

We get equality under the same conditions as (1), namely when x and y are parallel and pointing in the same direction. This proof of the triangle inequality (i.e., (3) from Theorem 1-1) is slightly different from Spivak, making it easier to understand the conditions under which equality holds.

1-3. Prove that $|x - y| \le |x| + |y|$. When does this equality hold? This follows immediately from (5) in the previous exercise- simply replace **y** with $-\mathbf{y}$. We get equality when **x** and **y** are parallel and pointing in *opposite* directions.

1-4. Prove that $||x| - |y|| \le |x - y|$. From (2) in Theorem 1-1, we know that $|\langle x, y \rangle| \le |x||y|$. From this we get $\langle x, y \rangle \le |x||y|$, as well as $-|x||y| \le -\langle x, y \rangle$. Using this, we see that

$$\langle \mathbf{x} - \mathbf{y}, \mathbf{x} - \mathbf{y} \rangle = |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2\langle \mathbf{x}, \mathbf{y} \rangle$$

$$\geq |\mathbf{x}|^2 + |\mathbf{y}|^2 - 2|\mathbf{x}||\mathbf{y}|$$

$$= (|\mathbf{x}| - |\mathbf{y}|)^2$$

Thus $|\mathbf{x} - \mathbf{y}|^2 \ge (|\mathbf{x}| - |\mathbf{y}|)^2$, which implies $|\mathbf{x} - \mathbf{y}| \ge ||\mathbf{x}| - |\mathbf{y}||$.

1-5. The quantity |y - x| is called the **distance** between *x* and *y*. Prove and interpret geometrically the "triangle inequality": $|z - x| \le |z - y| + |y - x|$.

From Problem 1-3, we know that $|\mathbf{u} - \mathbf{v}| \leq |\mathbf{u}| + |\mathbf{v}|$. Substituting in $\mathbf{u} = \mathbf{z} - \mathbf{y}$ and $\mathbf{v} = \mathbf{x} - \mathbf{y}$ gives the desired result. A geometrical interpretation is to think of \mathbf{x} , \mathbf{y} , and \mathbf{z} as the vertices of a triangle. The inequality establishes that the length of one side is always less than or equal to the sum of the lengths of the other two sides.

1-6. Let f and g be integrable on [a, b].

(a) Prove that $|\int_a^b f \cdot g| \leq (\int_a^b f^2)^{\frac{1}{2}} \cdot (\int_a^b g^2)^{\frac{1}{2}}$. Hint: Consider separately the cases $0 = \int_a^b (f - \lambda g)^2$ for some $\lambda \in \mathbb{R}$ and $0 < \int_a^b (f - \lambda g)^2$ for all $\lambda \in \mathbb{R}$.

If we had established (2) in Theorem 1-1 for abstract vector spaces, we could prove this result by showing that the integrable functions on [a, b] form a vector space, and that $\int_a^b f \cdot g$ is an inner product on this space. Instead of this, we stick with the scope of Spivak's development and follow his hint.

We wish to show

$$|\int_{a}^{b} fg| \le (\int_{a}^{b} f^{2})^{\frac{1}{2}} \cdot (\int_{a}^{b} g^{2})^{\frac{1}{2}}.$$
 (6)

Let $F(\lambda) = \int_a^b (f - \lambda g)^2$. Note that $F(\lambda) \ge 0$, because the integrand is never negative (\bigstar). Also, note that $F(\lambda) = A\lambda^2 + B\lambda + C$, where

$$A = \int_{a}^{b} g^{2}, \quad B = -2 \int_{a}^{b} fg, \text{ and } C = \int_{a}^{b} f^{2}.$$

If A = 0, then because of (\bigstar) , we also have B = 0, and (6) is satisfied with both sides equal to zero.

If $A \neq 0$ and *F* has no roots, then the discriminant $B^2 - 4AC$ is negative. Substituting in terms, we get

$$4(\int_{a}^{b} fg)^{2} < 4(\int_{a}^{b} f^{2})(\int_{a}^{b} g^{2}),$$

which leads to (6) as a strict inequality

If $A \neq 0$ and F = 0 for some λ , then from (\bigstar) we know that $F_{\min} = 0$ as well. Because A > 0, F_{\min} is well defined, with value

$$F_{\min}=F(-\frac{B}{2A}).$$

Setting this equal to zero, we obtain $B^2 = 4AC$, which leads to (6) as an equality.

(b) If equality holds, must $f = \lambda g$ for some $\lambda \in \mathbb{R}$? What if f and g are continuous?

From (a), we know that equality holds if $\int_a^b g^2 = 0$. Because of this, $f = \lambda g$ is **not** necessary for equality, even if f and g are continuous. For instance, let $f = \sin x$, $\lambda = 27$, and g = 0.

If we restrict ourselves to $\int_a^b g^2 > 0$, then from (a) we know that equality holds if $\int_a^b (f - \lambda g)^2 = 0$ for some λ .

These different cases can be combined into the single condition of *linear dependence*. For f(x) and g(x) to be linearly dependent, some linear combination of them must equal zero. That is, we must be able to find $\lambda_1, \lambda_2 \in \mathbb{R}$ such that

$$\lambda_1 f + \lambda_2 g = 0. \tag{7}$$

The condition we require is $\int_a^b (\lambda_1 f + \lambda_2 g)^2 = 0$. This is weaker than (7) because the integrand can be non zero at discrete points. This distinction goes away if *f* and *g* are continuous.

(c) Show that Theorem 1-1 (2) is a special case of (a).

Theorem 1-1 (2) is that $|\langle \mathbf{u}, \mathbf{v} \rangle| \le |\mathbf{u}| |\mathbf{v}|$, with equality if and only if **u** and **v** are linearly dependent.

To get this from our work here, let f and g be piecewise constant, with values that equal the components of vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. For instance, let $f(x) = u_i$ and $g(x) = v_i$ for $x \in (i - 1, i)$. This construction gives us

$$\langle \mathbf{u}, \mathbf{v} \rangle = \int_0^n f(x) \cdot g(x) \, dx.$$

The desired result $|\langle \mathbf{u}, \mathbf{v} \rangle| \le |\mathbf{u}| |\mathbf{v}|$ then follows from (6). From (b), equality occurs when \mathbf{u} and \mathbf{v} are linearly dependent.

1-7. A linear transformation $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is **norm preserving** if |T(x)| = |x|, and **inner product preserving** if $\langle Tx, Ty \rangle = \langle x, y \rangle$.

(a) Prove that *T* is norm preserving if and only if *T* is inner product preserving.

If *T* is norm preserving then *T* preserves inner products.

$$\langle Tx, Ty \rangle = \frac{1}{4}(|Tx + Ty|^2 - |Tx - Ty|^2)$$
(polarization identity)
$$= \frac{1}{4}(|T(x + y)|^2 - |T(x - y)|^2)$$
(linearity)
$$= \frac{1}{4}(|x + y|^2 - |x - y|^2)$$
(norm preserving)
$$= \langle x, y \rangle$$
(polarization identity)

Conversely, if *T* preserves inner products, then

$$|Tx| = \sqrt{\langle Tx, Ty \rangle} = \sqrt{\langle x, x \rangle} = |x|,$$

and so *T* is norm preserving.

(b) Prove that such a linear transformation T is 1-1 and T^{-1} is of the same sort.

T is 1-1 if $x \neq y$ implies $Tx \neq Ty$. This is equivalent to Tx = Ty implying x = y, which we now show.

$$Tx = Ty \Longrightarrow T(x - y) = 0$$
$$\implies |T(x - y)| = 0$$
$$\implies |x - y| = 0$$
$$\implies x - y = 0$$
$$\implies x = y$$

We've used the linearity of *T*, the fact that $|\mathbf{u}| = 0$ if and only if $\mathbf{u} = \mathbf{0}$ (from Theorem 1-1), as well as the hypothesis that *T* is norm preserving.

The inverse mapping T^{-1} satisfies $T(T^{-1}x) = x$. As a result,

 $T^{-1}x = T^{-1}y \Longrightarrow T(T^{-1}x) = T(T^{-1}y) \Longrightarrow x = y,$

and so T^{-1} is 1-1 as desired. The question of whether T^{-1} exists in the first place follows from linear algebra. If $T \in L(V, W)$, then

 $\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T.$

In our case, dim V = n, and because T is norm preserving, dim null T = 0. It follows that dim range T = n, and so T is onto. We already know that T is 1-1, and so it follows that T is invertible.

1-8. If $x, y \in \mathbb{R}^n$ are non-zero, the **angle** between x and y, denoted $\angle(x, y)$, is defined as arccos $(\langle x, y \rangle / |x| \cdot |y|)$, which makes sense by Theorem 1-1 (2). The linear transformation T is **angle preserving** if T is 1-1, and for $x, y \neq 0$ we have $\angle(Tx, Ty) = \angle(x, y)$.

(a) Prove that if *T* is norm preserving, then *T* is angle preserving.

If T is norm preserving, then from the previous problem T is also inner product preserving. It follows that T is angle preserving, because the angle is defined in terms of norms and inner products.

(b) If there is a basis $x_1, ..., x_n$ of \mathbb{R}^n and numbers $\lambda_1, ..., \lambda_n$ such that $Tx_i = \lambda_i x_i$, prove that *T* is angle preserving if and only if all $|\lambda_i|$ are equal.

Let A(a, b) be the inner product of the unit vectors pointing in the directions of *a* and *b*.

$$A(a,b) = \frac{\langle a,b\rangle}{|a||b|}$$

Note that $\angle(a, b) = \arccos(A(a, b))$, and that $\angle(a, b) = \angle(c, d)$ if and only if A(a, b) = A(c, d). From the polarization identity

$$4\langle x+y, x-y\rangle = |x|^2 - |y|^2,$$

we have

$$A(x+y, x-y) = \frac{|x|^2 - |y|^2}{4|x+y||x-y|}$$

Let e_i be the unit vector in the direction of each x_i , (i.e., $e_i = \frac{x_i}{|x_i|}$). Then $|e_i| = 1$, and so

$$A(e_i + e_j, e_i - e_j) = \frac{|e_i|^2 - |e_j|^2}{4|e_i + e_j||e_i - e_j|} = 0.$$

However, we also have $Te_i = \lambda_i e_i$, and so if $|\lambda_i| \neq |\lambda_j|$, then

$$A(T(e_i + e_j), T(e_i - e_j)) = \frac{|\lambda_i|^2 - |\lambda_j|^2}{4|\lambda_i e_i + \lambda_j e_j||\lambda_i e_i - \lambda_j e_j|} \neq 0$$

Thus $|\lambda_i| \neq |\lambda_j|$ causes *T* to not be angle preserving.

The other direction as stated is **false**. That is, all $|\lambda_i|$'s being equal does not make *T* angle preserving. For instance, consider \mathbb{R}^2 , with basis given by $x_1 = [1 \ 0]^T$ and $x_2 = [1 \ 1]^T$. Suppose $Tx_1 = x_1$, and $Tx_2 = -x_2$. It's easy to check that $\angle(x_1, x_2) = \pi/4$, while $\angle(Tx_1, Tx_2) = 3\pi/4$.

For the other direction to be true, we need all the λ_i to be equal (not just their absolute values). If all the λ_i are equal, say to λ , then for any vector $a \in \mathbb{R}^n$ we have $Ta = \lambda a$. As a result, for any two vectors $a, b \in \mathbb{R}^n$, we have

$$A(Ta,Tb) = \frac{\langle Ta,Tb\rangle}{|Ta||Tb|} = \frac{\langle \lambda a,\lambda b\rangle}{|\lambda a||\lambda b|} = \frac{\lambda^2}{|\lambda|^2} \cdot \frac{\langle a,b\rangle}{|a||b|} = A(a,b),$$

which establishes that T is angle preserving.

(c) What are all angle preserving $T : \mathbb{R}^n \longrightarrow \mathbb{R}^n$?

T is angle preserving if and only if there are orthonormal bases $\{e_i\}$ and $\{u_i\}$ of \mathbb{R}^n , and some positive $\lambda \in \mathbb{R}$ such that for all *i*

$$Te_i = \lambda u_i. \tag{8}$$

Let *T* be angle preserving and let $\{e_i\}$ be any orthonormal basis of \mathbb{R}^n . Let $\lambda_i = |Te_i|$ and let u_i be the unit vector in the direction of Te_i . All the λ_i 's are positive, and so we know from the same argument that we used in our answer to (b) that all the λ_i 's are equal. The orthogonality of the u_i 's is immediate, because if u_i and u_j are not orthogonal, then $A(u_i, u_j) \neq 0$. However $A(e_i, e_j) = 0$, and so this violates the hypothesis on *T*. Thus we started with an angle preserving *T* and arrived at (8).

To show that (8) implies angle preservation by *T*, notice that $\langle Ta, Tb \rangle = \lambda^2 \langle a, b \rangle$ for any two vectors $a, b \in \mathbb{R}^n$. Also, notice that $|Ta| = \lambda |a|$ and $|Tb| = \lambda |b|$. This gives us A(Ta, Tb) = A(a, b), establishing that *T* preserves angles.

1-9. If $0 \le \theta < \pi$, let $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ have the matrix $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. Show that *T* is angle preserving and if $x \ne 0$, then $\angle (x, Tx) = \theta$. *T* satisfies the hypothesis of (c) from the previous problem, with $\{e_i\}$ equal to the standard basis, $u_1 = [\cos \theta - \sin \theta]^T$, $u_2 = [\sin \theta \cos \theta]^T$, and $\lambda = 1$.

$$T(\begin{bmatrix} 1\\0 \end{bmatrix}) = \begin{bmatrix} \cos\theta\\ -\sin\theta \end{bmatrix}$$
 and $T(\begin{bmatrix} 0\\1 \end{bmatrix}) = \begin{bmatrix} \sin\theta\\ \cos\theta \end{bmatrix}$.

It follows from (c) of the previous problem that *T* is angle preserving.

To show that $\angle(x, Tx) = \theta$ for nonzero $x = x_1e_1 + x_2e_2$, note that $|x|^2 = |Tx|^2 = x_1^2 + x_2^2$, and that $\langle x, Tx \rangle = (x_1^2 + x_2^2) \cos \theta$. Therefore

$$\frac{\langle x, Tx \rangle}{|x||Tx|} = \cos \theta$$

From this, we get $\angle(x, Tx) = \theta$ as desired.

1-10.^{*} If $T : \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is a linear transformation, show that there is a number M such that $|T(h)| \le M|h|$ for $h \in \mathbb{R}^m$. Hint: Estimate |T(h)| in terms of |h| and the entries in the matrix of T.

We know from the singular value decomposition that associated with every $T: \mathbb{R}^m \longrightarrow \mathbb{R}^n$ is an orthonormal basis $\{u_i\}$ of \mathbb{R}^m , an orthonormal basis $\{v_i\}$ of \mathbb{R}^n , and a collection of positive real *singular values* σ_i such that $Tu_i = \sigma_i v_i$, for *i* ranging from 1 to min(m, n). The σ_i are the square roots of the eigenvalues of TT^T , and so come from a polynomial equation in the entries of the matrix of *T*. We can use the largest singular value σ_{max} as the *M* requested in the problem statement.

We use the same symbol T for the linear function and for the *matrix* of this linear function with respect to the standard basis.

The singular value decomposition is like a Ferrari. It's a beautiful machine, and it'll get you to the corner store, however so will walking or riding a bike. There's an aesthetic appeal to tackling problems in the cleanest and simplest way possible, and so we try this again. The *i*th component of *Th* is given by

$$g_i = T_{i1}h_1 + T_{i2}h_2 + \dots + T_{im}h_m.$$

We'd like to place a bound on $\sqrt{g_1^2 + g_2^2 + ... + g_n^2}$. A key observation is that for any collection of non-negative a_i , we have

$$(a_1 + a_2 + \dots + a_n)^2 \le 2n(a_1^2 + a_2^2 + \dots + a_n^2).$$
(9)

To see this, order and relabel the a_i 's so that $a_1 \ge a_2 \ge ... \ge a_n \ge 0$. Then write out the terms of $(a_1 + a_2 + ... + a_n)^2$ against a grid.

 \leq

$a_{1}a_{1}$	$a_{1}a_{2}$	$a_{1}a_{3}$	 $a_1 a_n$
$a_{2}a_{1}$	a ₂ a ₂	<i>a</i> ₂ <i>a</i> ₃	 a ₂ a _n
$a_{3}a_{1}$	<i>a</i> ₃ <i>a</i> ₂	<i>a</i> ₃ <i>a</i> ₃	 a ₃ a _n
:	:	:	:
a _n a ₁	a _n a ₂	a _n a ₃	 a _n a _n

$a_{1}a_{1}$	$a_{1}a_{1}$	$a_{1}a_{1}$	 $a_{1}a_{1}$
$a_{1}a_{1}$	<i>a</i> ₂ <i>a</i> ₂	<i>a</i> ₂ <i>a</i> ₂	 $a_{2}a_{2}$
$a_{1}a_{1}$	<i>a</i> ₂ <i>a</i> ₂	a ₃ a ₃	 <i>a</i> ₃ <i>a</i> ₃
:	:	:	:
$a_{1}a_{1}$	<i>a</i> ₂ <i>a</i> ₂	<i>a</i> ₃ <i>a</i> ₃	 a _n a _n

 \leq

	$a_{1}a_{1}$	$a_1 a_1$	$a_{1}a_{1}$	 $a_{1}a_{1}$				
	$a_{1}a_{1}$	a ₂ a ₂	a ₂ a ₂	 <i>a</i> ₂ <i>a</i> ₂	<i>a</i> ₂ <i>a</i> ₂			
	$a_{1}a_{1}$	a ₂ a ₂	a ₃ a ₃	 <i>a</i> ₃ <i>a</i> ₃	<i>a</i> ₃ <i>a</i> ₃	a ₃ a ₃		
	:	:						
	$a_{1}a_{1}$	a ₂ a ₂	<i>a</i> ₃ <i>a</i> ₃	a _n a _n	a _n a _n		a _n a _n	a _n a _n
		<i>a</i> ₂ <i>a</i> ₂	<i>a</i> ₃ <i>a</i> ₃	a _n a _n				
			<i>a</i> ₃ <i>a</i> ₃	:				
is	e.			a _n a _n				
lc	1			a _n a _n				

Replace every term $a_i a_j$ with $a_i a_i$ if i < j, and with $a_j a_j$ otherwise. This causes each term to stay the same or get bigger. Finally, add terms around the grid, getting a nesting of right angled arrangements of terms all with the same value. This results in 2n - 1 diagonals, like the one outlined in blue, each of which sum to $a_1^2 + a_2^2 + ... + a_n^2$. We use (9) because it's true, and cleaner than including the -1. If T_{max} is the largest of the absolute values of the entries of T, then

$$g_i^2 = (T_{i1}h_1 + T_{i2}h_2 + \dots + T_{im}h_m)^2$$

$$\leq (|T_{i1}h_1| + |T_{i2}h_2| + \dots + |T_{im}h_m|)^2$$

$$\leq T_{\max}^2(|h_1| + |h_2| + \dots + |h_m|)^2$$

$$\leq T_{\max}^2 2m(h_1^2 + h_2^2 + \dots + h_m^2)$$

$$= T_{\max}^2 2m|h|^2$$

Summing all *n* of the g_i 's, we see that |Th| is bounded by M|h| where

$$M=T_{\max}\sqrt{2mn}.$$

1-11. If $x, y \in \mathbb{R}^n$ and $z, w \in \mathbb{R}^m$, show that $\langle (x, z), (y, w) \rangle = \langle x, y \rangle + \langle z, w \rangle$ and $|(x, z)| = \sqrt{|x|^2 + |z|^2}$. Note that (x, z) and (y, w) denote points in \mathbb{R}^{n+m} .

We can see that $\langle (x,z), (y,w) \rangle = \langle x,y \rangle + \langle z,w \rangle$ by expanding $\langle (x,z), (y,w) \rangle$ according to the definition of the inner product.

$$\langle (x,z), (y,w) \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$$

+ $z_1 w_1 + z_2 w_2 + \dots + z_m w_m$

The first and second rows on the right equal $\langle x, y \rangle$ and $\langle z, w \rangle$ respectively, again by the definition of the inner product. Using this result, observe that

$$|(x,z)| = \sqrt{\langle (x,z), (x,z) \rangle}$$
$$= \sqrt{\langle x,x \rangle + \langle z,z \rangle}$$
$$= \sqrt{|x|^2 + |z|^2}$$

1-12.* Let $(\mathbb{R}^n)^*$ denote the dual space of the vector space \mathbb{R}^n . If $x \in \mathbb{R}^n$, define $\varphi_x \in (\mathbb{R}^n)^*$ by $\varphi_x(y) = \langle x, y \rangle$. Define $T : \mathbb{R}^n \longrightarrow (\mathbb{R}^n)^*$ by $T(x) = \varphi_x$. Show that T is a **1-1** linear transformation. The dual space of \mathbb{R}^n is the space of linear mappings from \mathbb{R}^n to \mathbb{R} . In his prescription of $\varphi_x(y)$, Spivak constructs such mappings from vectors in \mathbb{R}^n . We need to show that this prescription is both linear and **1-1**.

The linearity of *T* follows from the linearity of the inner product used in the definition of $\varphi_x(y)$. If $a, b \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$, then

$$arphi_{a+b}(y) = \langle a+b,y
angle \ = \langle a,y
angle + \langle b,y
angle \ = arphi_a(y) + \langle b,y
angle \ = arphi_a(y) + arphi_b(y),$$

and

$$arphi_{lpha a}(y) = \langle lpha a, y
angle$$

= $lpha \langle a, y
angle$
= $lpha \varphi_a(y).$

For *T* to be 1-1, we need to show that for any two unequal vectors $a, b \in \mathbb{R}^n$, we have $\varphi_a(x) \neq \varphi_b(x)$ for some $x \in \mathbb{R}^n$. Note that

$$\varphi_a(x) - \varphi_b(x) = \langle a, x \rangle - \langle b, x \rangle = \langle a - b, x \rangle$$

Picking x = a - b causes $\varphi_a(x) - \varphi_b(x) = |a - b|^2$, which we know is non zero because $a \neq b$. (See (1) of Theorem 1-1.)

We might as well also show that *T* is onto. Let φ be any linear map from \mathbb{R}^n to \mathbb{R} . Let $\{e_i\}$ be an orthonormal basis for \mathbb{R}^n , and note that for any vector $x = \sum_{i=1}^n x_i e_i$,

$$\varphi(x) = \sum_{i=1}^{n} x_i \varphi(e_i).$$

Define $a = \sum_{i=1}^{n} \varphi(e_i) e_i$, and note that

$$\langle a, x \rangle = \sum_{i=1}^n x_i \varphi(e_i).$$

It follows that $\varphi(x) = \langle a, x \rangle$, and so *T* is onto.

1-13.* If $x, y \in \mathbb{R}^n$, then x and y are called **perpendicular** (or **orthogonal**) if $\langle x, y \rangle = 0$. If x and y are perpendicular, prove that $|x + y|^2 = |x|^2 + |y|^2$.

We are proving the Pythagorean Theorem in arbitrary dimensions!

$$\begin{aligned} |x+y|^2 &= \langle x+y, x+y \rangle \\ &= \langle x, x \rangle + \langle y, y \rangle + 2 \langle x, y \rangle \\ &= \langle x, x \rangle + \langle y, y \rangle \\ &= |x|^2 + |y|^2 \end{aligned}$$

References

Sheldon Axler. *Linear Algebra Done Right*. Springer, 1996. ISBN 0387982582.

Michael Spivak. *Calculus on Manifolds*. Benjamin Cummings, 1965. ISBN 0846590219.