
Chapter 1: Functions on Euclidian Space
Notes on Spivak by Patch Kessler

December 29, 2018

These notes and observations document my progression through
Michael Spivak’s Calculus on Manifolds1. The idea is to document 1 Michael Spivak. Calculus on Manifolds.

Benjamin Cummings, 1965. ISBN
0846590219

my learning in beautiful Tufte-LATEX style documents. Spivak’s text is
black, while all of my own writing is blue.

Norm and Inner Product

Euclidean n-space Rn is defined as the set of all n-tuples (x1, ..., xn)

of real numbers xi (a “1-tuple of numbers” is just a number and
R1 = R, the set of all real numbers). An element of Rn is often called
a point in Rn, and R1, R2, R3 are often called the line, the plane, and
space respectively. If x denotes an element of Rn, then x is an n-tuple
of numbers, the ith one of which is denoted xi; thus we can write

x = (x1, ..., xn).

A point in Rn is frequently also called a vector in Rn, because Rn,
with x + y = (x1 + y1, ..., xn + yn) and ax = (ax1, ..., axn), as oper-
ations, is a vector space (over the real numbers, of dimension n). In
this vector space there is the notion of the length of a vector x, usu-
ally called the norm |x| of x and defined by |x| =

√
(x1)2 + · · ·+ (xn)2.

If n = 1, then |x| is the usual absolute value of x. The relation be-
tween the norm and the vector space structure of Rn is very impor-
tant.

I often use bold characters for vectors, and deal with them as columns.

x =


x1
...

xn


This enables familiar mechanics and thought processes from linear
algebra. I use subscripts rather than superscripts.
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1-1 Theorem. If x, y ∈ Rn and a ∈ R, then

(1) |x| ≥ 0, and |x| = 0 if and only if x = 0.

(2) |∑n
i=1 xiyi| ≤ |x| · |y|; equality holds if and only if x and y are

linearly dependent.

(3) |x + y| ≤ |x|+ |y|.

(4) |ax| = |a| · |x|.

Proof

(1) is left to the reader.

|x| ≥ 0
The real number |x| is constructed by a process, the final step of
which is a mapping by the square root function. The square root
function returns values on [0, ∞). �

|x| = 0 if and only if x = 0
If x = 0, then each xi is zero, each x2

i is zero, the sum of these is
zero, and the square root of this sum is zero. Conversely if |x| = 0
then x2

1 + · · ·+ x2
n = 0 by the definition of

√
. The x2

i terms are
non-negative, and so if any of them are positive, then the sum of
them is positive. But the sum is not positive, and so none of the x2

i
terms are positive. None of them are negative either, so they must
all be zero. If x2

i is zero then xi is zero, and if all the xi’s are zero
then x = 0. �

(2) If x and y are linearly dependent, equality clearly holds. If not,
then λy− x 6= 0 for all λ ∈ R, so

0 < |λy− x|2 =
n

∑
i=1

(λyi − xi)2

= λ2
n

∑
i=1

(yi)2 − 2λ
n

∑
i=1

xiyi +
n

∑
i=1

(xi)2.

Therefore the right side is a quadratic equation in λ with no real
solution, and its discriminant must be negative. Thus

4

(
n

∑
i=1

xiyi

)2

− 4
n

∑
i=1

(xi)2 ·
n

∑
i=1

(yi)2 < 0.

(3) |x + y|2 = ∑n
i=1(xi + yi)2

=
n

∑
I=1

(xi)2 +
n

∑
I=1

(yi)2 + 2
n

∑
I=1

xiyi

≤ |x|2 + |y|2 + 2|x| · |y| by (2)

= (|x|+ |y|)2.
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(4) |ax| =
√

∑n
i=1(axi)2 =

√
a2 ∑n

i=1(xi)2 = |a| · |x|. �

The quantity ∑n
i=1 xiyi which appears in (2) is called the inner prod-

uct of x and y and denoted 〈x, y〉. The most important properties of
the inner product are the following.

1-2 Theorem. If x, x1, x2 and y, y1, y2 are vectors in Rn and z ∈ R,
then

(1) 〈x, y〉 = 〈y, x〉 (symmetry).

(2) 〈ax, y〉 = 〈x, ay〉 = a〈x, y〉 (bilinearity).
〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉
〈x, y1 + y2〉 = 〈x, y1〉+ 〈x, y2〉

(3) 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 if and (positive definiteness).
only if x = 0

(4) |x| =
√
〈x, x〉.

(5) 4〈x, y〉 = |x + y|2 − |x− y|2 (polarization identity).

Proof

(1) 〈x, y〉 = ∑n
i=1 xiyi = ∑n

i=1 yixi = 〈y, x〉.

(2) By (1) it suffices to prove

〈ax, y〉 = a〈x, y〉,
〈x1 + x2, y〉 = 〈x1, y〉+ 〈x2, y〉.

These follow from the equations

〈ax, y〉 =
n

∑
i=1

(axi)yi = a
n

∑
i=1

xiyi = a〈x, y〉,

〈x1 + x2, y〉 =
n

∑
i=1

(xi
1 + xi

2)y
i =

n

∑
i=1

xi
1yi +

n

∑
i=1

xi
2yi

= 〈x1, y〉+ 〈x2, y〉.

(3) is left to the reader.

〈x, x〉 is the sum of non-negative terms x2
i , and so 〈x, x〉 ≥ 0.

If x = 0, then from (1) of Theorem 1-1 we know that |x| = 0, and
from (4) that 〈x, x〉 = 0. Conversely if 〈x, x〉 = 0, then |x| = 0 from
(4), and from (1) of Theorem 1-1 we know that x = 0. �

(4) is left to the reader.
Expand 〈x, x〉 according to its definition, and take the square root,

to get
√

x2
1 + · · ·+ x2

n. This is the definition of |x|. �
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(5) |x + y|2 − |x− y|2

= 〈x + y, x + y〉 − 〈x− y, x− y〉 by (4)

= 〈x, x〉+ 2〈x, y〉+ 〈y, y〉 − (〈x, x〉 − 2〈x, y〉+ 〈y, y〉)
= 4〈x, y〉. �

We conclude this section with some important remarks about nota-
tion. The vector (0, ..., 0) will usually be denoted simply 0. The usual
basis of Rn is e1, ..., en, where ei = (0, ..., 1, ..., 0), with the 1 in the
ith place. If T : Rn −→ Rm is a linear transformation, the matrix of
T with respect to the usual bases of Rn and Rm is the m × n matrix
A = (aij), where T(ei) = ∑m

j=1 ajiej - the coefficients of T(ei) appear in
the ith column of the matrix. If S : Rm −→ Rp has the p×m matrix
B, then S ◦ T has the p× n matrix BA [here S ◦ T(x) = S(T(x)); most
books on linear algebra denote S ◦ T simply ST]. To find T(x) one
computes the m× 1 matrix

y1

...
ym

 =


a11, ... , a1n

...
...

am1, ... , amn

 ·


x1

...
xm

 ;

then T(x) = (y1, ..., ym). One notational convention greatly simplifies
many formulas: if x ∈ Rn and y ∈ Rm, then (x, y) denotes

(x1, ..., xn, y1, ..., ym) ∈ Rn+m.

Again, my thoughts are that it’s simpler to deal with everything as
columns in the first place. Also, for a clean and rigorous introduction
to linear algebra, I recommend Linear Algebra Done Right2. 2 Sheldon Axler. Linear Algebra Done

Right. Springer, 1996. ISBN 0387982582

Problems
1-1. Prove that |x| ≤ ∑n

i=1 |xi|.
We can show this by writing x with respect to the ei basis.

x = x1e1 + x1e1 + ... + xnen

From Theorem 1-1 we know that |xiei| = |xi| · |ei| = |xi|, and we also
have the triangle inequality, which we now apply repeatedly

|x| = |x1e1 + x2e2 + x3e3 + · · ·+ xnen|
≤ |x1|+ |x2e2 + x3e3 + · · ·+ xnen|
≤ |x1|+ |x2|+ |x3e3 + · · ·+ xnen|
...

≤ |x1|+ |x2|+ |x3|+ · · ·+ |xn|
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1-2. When does equality hold in Theorem 1-1 (3)? Hint: Re-examine
the proof; the answer is not “when x and y are linearly dependent.”
When does |x + y| = |x|+ |y|?

Start by writing y as αx + e, where α ∈ R and e is orthogonal to x.
Note that |y|2 = α2|x|2 + |e|2, and so

|y| ≥ α|x|, (1)

with equality when e = 0 and α > 0. e = 0 is another way of saying
that x and y are parallel, while α > 0 means that both vectors point in
the same direction. Note that

|x + y|2 = (1 + α2)|x|2 + |e|2 + 2α|x|2, (2)

while
(|x|+ |y|)2 = (1 + α2)|x|2 + |e|2 + 2|x||y|. (3)

Combining (1), (2), and (3), we see that

|x + y|2 ≤ (|x|+ |y|)2, (4)

with equality under the same conditions as in (1). If a, b ≥ 0 and
a2 ≤ b2, then a ≤ b, and so (4) implies the triangle inequality

|x + y| ≤ |x|+ |y|. (5)

We get equality under the same conditions as (1), namely when x
and y are parallel and pointing in the same direction. This proof of
the triangle inequality (i.e., (3) from Theorem 1-1) is slightly different
from Spivak, making it easier to understand the conditions under
which equality holds.

1-3. Prove that |x− y| ≤ |x|+ |y|. When does this equality hold?
This follows immediately from (5) in the previous exercise- simply
replace y with −y. We get equality when x and y are parallel and
pointing in opposite directions.

1-4. Prove that ||x| − |y|| ≤ |x− y|.
From (2) in Theorem 1-1, we know that |〈x, y〉| ≤ |x||y|. From this we
get 〈x, y〉 ≤ |x||y|, as well as −|x||y| ≤ −〈x, y〉. Using this, we see
that

〈x− y, x− y〉 = |x|2 + |y|2 − 2〈x, y〉
≥ |x|2 + |y|2 − 2|x||y|
= (|x| − |y|)2

Thus |x− y|2 ≥ (|x| − |y|)2, which implies |x− y| ≥ ||x| − |y||.
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1-5. The quantity |y − x| is called the distance between x and y.
Prove and interpret geometrically the “triangle inequality”: |z− x| ≤
|z− y|+ |y− x|.
From Problem 1-3, we know that |u − v| ≤ |u| + |v|. Substituting
in u = z− y and v = x− y gives the desired result. A geometrical
interpretation is to think of x, y, and z as the vertices of a triangle.
The inequality establishes that the length of one side is always less
than or equal to the sum of the lengths of the other two sides.

1-6. Let f and g be integrable on [a, b].

(a) Prove that |
∫ b

a f · g| ≤ (
∫ b

a f 2)
1
2 · (

∫ b
a g2)

1
2 . Hint: Consider

separately the cases 0 =
∫ b

a ( f − λg)2 for some λ ∈ R and

0 <
∫ b

a ( f − λg)2 for all λ ∈ R.

If we had established (2) in Theorem 1-1 for abstract vector spaces,
we could prove this result by showing that the integrable functions
on [a, b] form a vector space, and that

∫ b
a f · g is an inner product

on this space. Instead of this, we stick with the scope of Spivak’s
development and follow his hint.

We wish to show

|
∫ b

a
f g| ≤ (

∫ b

a
f 2)

1
2 · (

∫ b

a
g2)

1
2 . (6)

Let F(λ) =
∫ b

a ( f − λg)2. Note that F(λ) ≥ 0, because the integrand
is never negative (F). Also, note that F(λ) = Aλ2 + Bλ+C, where

A =
∫ b

a
g2, B = −2

∫ b

a
f g, and C =

∫ b

a
f 2.

If A = 0, then because of (F), we also have B = 0, and (6) is
satisfied with both sides equal to zero.

If A 6= 0 and F has no roots, then the discriminant B2 − 4AC is
negative. Substituting in terms, we get

4(
∫ b

a
f g)2 < 4(

∫ b

a
f 2)(

∫ b

a
g2),

which leads to (6) as a strict inequality

If A 6= 0 and F = 0 for some λ, then from (F) we know that
Fmin = 0 as well. Because A > 0, Fmin is well defined, with value

Fmin = F(− B
2A

).

Setting this equal to zero, we obtain B2 = 4AC, which leads to (6)
as an equality.
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(b) If equality holds, must f = λg for some λ ∈ R? What if f and g
are continuous?

From (a), we know that equality holds if
∫ b

a g2 = 0. Because of
this, f = λg is not necessary for equality, even if f and g are
continuous. For instance, let f = sin x, λ = 27, and g = 0.

If we restrict ourselves to
∫ b

a g2 > 0, then from (a) we know that

equality holds if
∫ b

a ( f − λg)2 = 0 for some λ.

These different cases can be combined into the single condition of
linear dependence. For f (x) and g(x) to be linearly dependent, some
linear combination of them must equal zero. That is, we must be
able to find λ1, λ2 ∈ R such that

λ1 f + λ2g = 0. (7)

The condition we require is
∫ b

a (λ1 f + λ2g)2 = 0. This is weaker
than (7) because the integrand can be non zero at discrete points.
This distinction goes away if f and g are continuous.

(c) Show that Theorem 1-1 (2) is a special case of (a).

Theorem 1-1 (2) is that |〈u, v〉| ≤ |u||v|, with equality if and only if
u and v are linearly dependent.

To get this from our work here, let f and g be piecewise constant,
with values that equal the components of vectors u, v ∈ Rn. For
instance, let f (x) = ui and g(x) = vi for x ∈ (i − 1, i). This
construction gives us

〈u, v〉 =
∫ n

0
f (x) · g(x) dx.

The desired result |〈u, v〉| ≤ |u||v| then follows from (6). From (b),
equality occurs when u and v are linearly dependent.

1-7. A linear transformation T : Rn −→ Rn is norm preserving if
|T(x)| = |x|, and inner product preserving if 〈Tx, Ty〉 = 〈x, y〉.

(a) Prove that T is norm preserving if and only if T is inner product
preserving.

If T is norm preserving then T preserves inner products.

〈Tx, Ty〉 = 1
4
(|Tx + Ty|2 − |Tx− Ty|2) (polarization identity)

=
1
4
(|T(x + y)|2 − |T(x− y)|2) (linearity)

=
1
4
(|x + y|2 − |x− y|2) (norm preserving)

= 〈x, y〉 (polarization identity)
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Conversely, if T preserves inner products, then

|Tx| =
√
〈Tx, Ty〉 =

√
〈x, x〉 = |x|,

and so T is norm preserving.

(b) Prove that such a linear transformation T is 1-1 and T−1 is of the
same sort.

T is 1-1 if x 6= y implies Tx 6= Ty. This is equivalent to Tx = Ty
implying x = y, which we now show.

Tx = Ty =⇒ T(x− y) = 0

=⇒ |T(x− y)| = 0

=⇒ |x− y| = 0

=⇒ x− y = 0

=⇒ x = y

We’ve used the linearity of T, the fact that |u| = 0 if and only if
u = 0 (from Theorem 1-1), as well as the hypothesis that T is norm
preserving.

The inverse mapping T−1 satisfies T(T−1x) = x. As a result,

T−1x = T−1y =⇒ T(T−1x) = T(T−1y) =⇒ x = y,

and so T−1 is 1-1 as desired. The question of whether T−1 exists in
the first place follows from linear algebra. If T ∈ L(V, W), then

dim V = dim null T + dim range T.

In our case, dim V = n, and because T is norm preserving, dim
null T = 0. It follows that dim range T = n, and so T is onto. We
already know that T is 1-1, and so it follows that T is invertible.

1-8. If x, y ∈ Rn are non-zero, the angle between x and y, denoted
∠(x, y), is defined as arccos (〈x, y〉/|x| · |y|), which makes sense by
Theorem 1-1 (2). The linear transformation T is angle preserving if T
is 1-1, and for x, y 6= 0 we have ∠(Tx, Ty) = ∠(x, y).

(a) Prove that if T is norm preserving, then T is angle preserving.

If T is norm preserving, then from the previous problem T is also
inner product preserving. It follows that T is angle preserving,
because the angle is defined in terms of norms and inner products.
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(b) If there is a basis x1, ..., xn of Rn and numbers λ1, ..., λn such that
Txi = λixi, prove that T is angle preserving if and only if all |λi|
are equal.

Let A(a, b) be the inner product of the unit vectors pointing in the
directions of a and b.

A(a, b) =
〈a, b〉
|a||b| .

Note that ∠(a, b) = arccos(A(a, b)), and that ∠(a, b) = ∠(c, d) if
and only if A(a, b) = A(c, d). From the polarization identity

4〈x + y, x− y〉 = |x|2 − |y|2,

we have

A(x + y, x− y) =
|x|2 − |y|2

4|x + y||x− y| .

Let ei be the unit vector in the direction of each xi, (i.e., ei =
xi
|xi |

).
Then |ei| = 1, and so

A(ei + ej, ei − ej) =
|ei|2 − |ej|2

4|ei + ej||ei − ej|
= 0.

However, we also have Tei = λiei, and so if |λi| 6= |λj|, then

A(T(ei + ej), T(ei − ej)) =
|λi|2 − |λj|2

4|λiei + λjej||λiei − λjej|
6= 0.

Thus |λi| 6= |λj| causes T to not be angle preserving.

The other direction as stated is false. That is, all |λi|’s being equal
does not make T angle preserving. For instance, consider R2, with
basis given by x1 = [1 0]T and x2 = [1 1]T. Suppose Tx1 = x1,
and Tx2 = −x2. It’s easy to check that ∠(x1, x2) = π/4, while
∠(Tx1, Tx2) = 3π/4.

For the other direction to be true, we need all the λi to be equal
(not just their absolute values). If all the λi are equal, say to λ, then
for any vector a ∈ Rn we have Ta = λa. As a result, for any two
vectors a, b ∈ Rn, we have

A(Ta, Tb) =
〈Ta, Tb〉
|Ta||Tb| =

〈λa, λb〉
|λa||λb| =

λ2

|λ|2 ·
〈a, b〉
|a||b| = A(a, b),

which establishes that T is angle preserving.

(c) What are all angle preserving T : Rn −→ Rn?

T is angle preserving if and only if there are orthonormal bases
{ei} and {ui} of Rn, and some positive λ ∈ R such that for all i

Tei = λui. (8)
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Let T be angle preserving and let {ei} be any orthonormal basis
of Rn. Let λi = |Tei| and let ui be the unit vector in the direction
of Tei. All the λi’s are positive, and so we know from the same
argument that we used in our answer to (b) that all the λi’s are
equal. The orthogonality of the ui’s is immediate, because if ui and
uj are not orthogonal, then A(ui, uj) 6= 0. However A(ei, ej) = 0,
and so this violates the hypothesis on T. Thus we started with an
angle preserving T and arrived at (8).

To show that (8) implies angle preservation by T, notice that
〈Ta, Tb〉 = λ2〈a, b〉 for any two vectors a, b ∈ Rn. Also, notice
that |Ta| = λ|a| and |Tb| = λ|b|. This gives us A(Ta, Tb) = A(a, b),
establishing that T preserves angles.

1-9. If 0 ≤ θ < π, let T : R2 −→ R2 have the matrix

(
cos θ sin θ

− sin θ cos θ

)
.

Show that T is angle preserving and if x 6= 0, then ∠(x, Tx) = θ.
T satisfies the hypothesis of (c) from the previous problem, with {ei}
equal to the standard basis, u1 = [cos θ − sin θ]T, u2 = [sin θ cos θ]T,
and λ = 1.

T(

[
1
0

]
) =

[
cos θ

− sin θ

]
and T(

[
0
1

]
) =

[
sin θ

cos θ

]
.

It follows from (c) of the previous problem that T is angle preserving.

To show that ∠(x, Tx) = θ for nonzero x = x1e1 + x2e2, note that
|x|2 = |Tx|2 = x2

1 + x2
2, and that 〈x, Tx〉 = (x2

1 + x2
2) cos θ. Therefore

〈x, Tx〉
|x||Tx| = cos θ.

From this, we get ∠(x, Tx) = θ as desired.

1-10.? If T : Rm −→ Rn is a linear transformation, show that there is a
number M such that |T(h)| ≤ M|h| for h ∈ Rm. Hint: Estimate |T(h)|
in terms of |h| and the entries in the matrix of T.
We know from the singular value decomposition that associated
with every T : Rm −→ Rn is an orthonormal basis {ui} of Rm, an
orthonormal basis {vi} of Rn, and a collection of positive real singular
values σi such that Tui = σivi, for i ranging from 1 to min(m, n). The We use the same symbol T for the

linear function and for the matrix of
this linear function with respect to the
standard basis.

σi are the square roots of the eigenvalues of TTT, and so come from
a polynomial equation in the entries of the matrix of T. We can use
the largest singular value σmax as the M requested in the problem
statement.
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The singular value decomposition is like a Ferrari. It’s a beautiful
machine, and it’ll get you to the corner store, however so will walk-
ing or riding a bike. There’s an aesthetic appeal to tackling problems
in the cleanest and simplest way possible, and so we try this again.
The ith component of Th is given by

gi = Ti1h1 + Ti2h2 + ... + Timhm.

We’d like to place a bound on
√

g2
1 + g2

2 + ... + g2
n. A key observation

is that for any collection of non-negative ai, we have

(a1 + a2 + ... + an)
2 ≤ 2n(a2

1 + a2
2 + ... + a2

n). (9)

To see this, order and relabel the ai’s so that a1 ≥ a2 ≥ ... ≥ an ≥ 0.
Then write out the terms of (a1 + a2 + ... + an)2 against a grid.

<

...
...
...

...

a1a1 a1a2 a1a3 a1an

a2a1 a2a2 a2a3 a2an

a3a1 a3a2 a3a3 a3an

an n n na1 a a2 a a3 a an

... ... ... ...

...
...
...

...

a1a1 a1a1 a1a1 a1a

a1a1 a2a2 a2a2 a2a

a1a1 a2a2 a3

1 2 3

a3

1

2

3a3a

a na1 a a2 a a3 a an

... ... ... ...
...
...
...

a1a1 a1a1 a1a1 a1a

a1a1 a2a2 a2a2 a2a

a1a1 a2a2 a3

1 2 3

a3

1

2

3a3a

a na1 a a2 a a3 a an ...

2 3 na a2 a a3 a an

3a a3

na an

na an

... ... ...

a2a2

3a3a

na an

3a3a

...

na an na an

<

Replace every term aiaj with aiai if i < j, and with ajaj otherwise.
This causes each term to stay the same or get bigger. Finally, add
terms around the grid, getting a nesting of right angled arrangements
of terms all with the same value. This results in 2n− 1 diagonals, like
the one outlined in blue, each of which sum to a2

1 + a2
2 + ... + a2

n. We
use (9) because it’s true, and cleaner than including the −1. If Tmax is
the largest of the absolute values of the entries of T, then

g2
i = (Ti1h1 + Ti2h2 + ... + Timhm)

2

≤ (|Ti1h1|+ |Ti2h2|+ ... + |Timhm|)2

≤ T2
max(|h1|+ |h2|+ ... + |hm|)2

≤ T2
max2m(h2

1 + h2
2 + ... + h2

m)

= T2
max2m|h|2

Summing all n of the gi’s, we see that |Th| is bounded by M|h| where

M = Tmax
√

2mn.
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1-11. If x, y ∈ Rn and z, w ∈ Rm, show that 〈(x, z), (y, w)〉 = 〈x, y〉+
〈z, w〉 and |(x, z)| =

√
|x|2 + |z|2. Note that (x, z) and (y, w) denote

points in Rn+m.
We can see that 〈(x, z), (y, w)〉 = 〈x, y〉 + 〈z, w〉 by expanding
〈(x, z), (y, w)〉 according to the definition of the inner product.

〈(x, z), (y, w)〉 = x1y1 + x2y2 + ... + xnyn

+z1w1 + z2w2 + ... + zmwm

The first and second rows on the right equal 〈x, y〉 and 〈z, w〉 respec-
tively, again by the definition of the inner product. Using this result,
observe that

|(x, z)| =
√
〈(x, z), (x, z)〉

=
√
〈x, x〉+ 〈z, z〉

=
√
|x|2 + |z|2

1-12.? Let (Rn)? denote the dual space of the vector space Rn. If
x ∈ Rn, define ϕx ∈ (Rn)? by ϕx(y) = 〈x, y〉. Define T : Rn −→ (Rn)?

by T(x) = ϕx. Show that T is a 1-1 linear transformation.
The dual space of Rn is the space of linear mappings from Rn to R.
In his prescription of ϕx(y), Spivak constructs such mappings from
vectors in Rn. We need to show that this prescription is both linear
and 1-1.

The linearity of T follows from the linearity of the inner product used
in the definition of ϕx(y). If a, b ∈ Rn, and α ∈ R, then

ϕa+b(y) = 〈a + b, y〉
= 〈a, y〉+ 〈b, y〉
= ϕa(y) + ϕb(y),

and

ϕαa(y) = 〈αa, y〉
= α〈a, y〉
= αϕa(y).

For T to be 1-1, we need to show that for any two unequal vectors
a, b ∈ Rn, we have ϕa(x) 6= ϕb(x) for some x ∈ Rn. Note that

ϕa(x)− ϕb(x) = 〈a, x〉 − 〈b, x〉 = 〈a− b, x〉

Picking x = a− b causes ϕa(x)− ϕb(x) = |a− b|2, which we know is
non zero because a 6= b. (See (1) of Theorem 1-1.)
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We might as well also show that T is onto. Let ϕ be any linear map
from Rn to R. Let {ei} be an orthonormal basis for Rn, and note that
for any vector x = ∑n

i=1 xiei,

ϕ(x) =
n

∑
i=1

xi ϕ(ei).

Define a = ∑n
i=1 ϕ(ei)ei, and note that

〈a, x〉 =
n

∑
i=1

xi ϕ(ei).

It follows that ϕ(x) = 〈a, x〉, and so T is onto.

1-13.? If x, y ∈ Rn, then x and y are called perpendicular (or or-
thogonal) if 〈x, y〉 = 0. If x and y are perpendicular, prove that
|x + y|2 = |x|2 + |y|2.
We are proving the Pythagorean Theorem in arbitrary dimensions!

|x + y|2 = 〈x + y, x + y〉
= 〈x, x〉+ 〈y, y〉+ 2〈x, y〉
= 〈x, x〉+ 〈y, y〉
= |x|2 + |y|2
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