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1 Introduction

The Algebraic Riccati Equation (ARE) is the following matrix equation for the n × n self-adjoint matrix P

A∗P + PA + PDP + C = 0, (1)

where A, C, and D are n × n matrices (in R or C), with C = C∗ and D = D∗. Generally, the question
of solution existence and uniqueness is nontrivial. For instance, in the case of 1 × 1 matrices, (1) becomes
the familiar quadratic equation dp2 + 2ap + c = 0, which may have distinct solutions, a unique solution, or
no solution (when d, a, c and p are real). Although our interest is in the self-adjoint solutions of (1), non
self-adjoint solutions to (1) may also exist, for instance

P =
[
0 1
0 0

]
solves (1) with A =

[
a 0
0 −a

]
, D =

[
0 0
0 0

]
, and C =

[
0 0
0 0

]
. (2)

In the case of non self-adjoint solutions, we note that if P solves (1) then so does its adjoint P ∗.

Research on the ARE and its variants has been extremely active for over half a century, see [7] for
references. Our work begins in Section 2 with a description of the Linear Quadratic Regulation (LQR)
problem from control theory, which is one of the principle motivations for the ARE. In this context there are
well-known results on the existence and uniqueness of certain ARE solutions. Essentially, the optimal control
for any reasonable physical system corresponds to the solution of an ARE which exists, is unique, and can
be computed easily using a variety of methods. Equation (1) however is much deeper than this particular
application. Our main goal in this project is to describe solutions of (1) using the geometry of Lagrangian
subspaces and symplectic forms. The connection between ARE solutions and Lagrangian subspaces is well
known (see [5] and references given there). The geometric characterization of the ARE solutions that we
present is related to the classical work on the symplectic classification of quadratic forms- see [6, §21.5] and
references given there. We undertake our main task in Section 3, where we characterize the real symmetric
solutions of (1) in the case where A, C, and D are real. As part of this characterization, we obtain sufficient
conditions for the existence of these solutions. Core objects in Section 3 are established using the natural
and aesthetic language of dual spaces. This material is unfamiliar to many engineers, and so in Section
4 we establish these core objects using familiar but less elegant tools like inner products. In low enough
dimensions, this development can be visualized, as we show in Section 4.1. After showing in Section 5 that
our geometric characterization from Section 3 leads to a method of computing ARE solutions in Matlab,
we end in Section 6 with concluding remarks and a discussion of ways in which the current work can be
extended.

A substantial portion of our work is contained in the Appendices. In Appendix A, we derive conditions
that must be satisfied by a solution to the LQR problem. In Appendix B we define terms used in Sections 2
and 3, and we discuss several uses of the word adjoint. In Appendix C, we prove the many assertions from
Section 3, and in Appendix D, we discuss real objects in vector spaces over C, as well as the complexification
of vector spaces over R.

2 Linear Quadratic Regulation

In this section we describe the Linear Quadratic Regulation (LQR) problem and its connection to the ARE.
The LQR problem is to find a control function u(t) for the system

ẋ = Ax + Bu, x(0) = x0 (3)
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which minimizes the cost function

J =
∫ T

0

(xT Qx + uT Ru)dt + x̂T Q̂x̂, (4)

where Q = QT ≥ 0, Q̂ = Q̂T ≥ 0, and R = RT > 0, (and where x̂ denotes x(T )). We refer to a u(t) that
minimizes J as optimal. The matrices Q and R penalize nonzero state values x(t) and control values u(t)
respectively for t ∈ [0, T ], while the matrix Q̂ penalizes nonzero state values x̂ at the final time T .

In Appendix A, we show that if a smooth u(t) minimizes J , then it satisfies

u(t) = −R−1BT P (t)x(t), (5)

where P (t) = P T (t) ≥ 0 satisfies what we will call the Riccati initial value problem, consisting of the
differential equation

−Ṗ = AT P + PA − PBR−1BT P + Q, (6)

and the starting condition P (T ) = Q̂, with integration backwards in time, from T to t < T . The LQR
problem therefore is associated with the ARE given by

0 = AT P + PA − PBR−1BT P + Q. (7)

We note that solutions of (7) are fixed points in the flow induced by (6). Collecting results from the excellent
book [7] by Lancaster and Rodman, we obtain the following

Theorem 2.1 The Riccati initial value problem with Q̂ = 0 has a well-defined solution for every t < T . If
(A,B) is stabilizable1, then P (t) −→ P as T −→ ∞, where P is a positive semi-definite solution of (7). If
in addition (Q,A) is observable, then this P is positive definite, and is the only matrix which satisfies (7)
among all positive semi-definite matrices.

The positive definite P in Theorem 2.1 is particularly important because it plays a role in the infinite
horizon LQR problem, in which the cost function is given by

J∞ =
∫ ∞

0

(xT Qx + uT Ru)dt. (8)

If all the hypotheses of Theorem 2.1 are satisfied, then the infinite horizon problem and its solution can be
obtained from the finite time problem by taking the limit as T −→ ∞. In particular, because P (t) at any
fixed time t approaches the constant positive definite P from Theorem 2.1, the optimal u at this fixed time
must satisfy

u(t) = −R−1BTPx(t). (9)

The corresponding minimum value of J∞ is given by xT
0 Px0. Also, we note that using (9) as a feedback

rule for u(t) in ẋ = Ax + Bu causes the closed loop system ẋ = (A − BR−1BT P )x to be stable, (i.e., the
eigenvalues of A − BR−1BT P are in the open left half plane).

In addition to an existence and uniqueness result for solutions to the ARE given in (7), the LQR problem
suggests a practical way of computing solutions; simply start at 0 and integrate (6) until P (t) stops changing.
With this in mind, we note that with Y = PX, the nonlinear (6) has the following linear equivalent

d

dt

[
X
Y

]
=

[
A −BR−1BT

−Q −AT

] [
X
Y

]
(10)

2.1 The One Dimensional Setting

Here we illustrate the LQR solution and some of its possible degeneracies in the easy to understand one
dimensional setting. To emphasize that that all objects are now scalars, we write (3) as

ẋ = ax + bu, x(0) = x0, (11)

1The term stabilizable is defined along with its relatives in Appendix B.1.
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and we write J as

J =
∫ T

0

(qx2 + ru2)dt + q̂x̂2, (12)

where x̂ = x(T ). From Appendix A we know that if a smooth optimal u(t) exists, then it must satisfy

u(t) = − b

r
p(t)x(t), (13)

where p(t) satisfies the Riccati initial value problem given by p(T ) = q̂, and the differential equation

−ṗ = q + 2ap − b2

r
p2 =: f(p). (14)

Our ultimate interest is in the fixed points of the flow induced by (14), as these are the solutions of the
ARE given by f(p) = 0. This flow can be visualized by plotting f(p) as in Figure 1. We note that when
there are no fixed points (i.e., when ra2 + 4qb2 < 0), every trajectory that satisfies (14) experiences a finite
time singularity. If the trajectory through p(T ) = q̂ experiences its singularity over the interval on which an
optimal control is desired, then of course this optimal control is an impossibility.

q + a2r
b2

p1 ar
b2

p2

dd

f(p)

p

d = r
b2

√
a2 + qb2

r ≥ ar
b2

Figure 1: Here we graph the function f(p) which governs the evolution of p(t) according to −ṗ = f(p). As
t decreases, points p on the x-axis move as indicated by the large black arrows. We consider here the case
b �= 0, r > 0, and q ≥ 0.

When the conditions q ≥ 0 and r > 0 given with the LQR problem are satisfied, the first segment of
Theorem 2.1 assures us that the solution p(t) to the Riccati initial value problem with q̂ = 0 is well-defined
for all t < T . The second segment of Theorem 2.1 guarantees that the finite limit of p(t) is nonnegative if
the pair (a, b) is stabilizable. In one dimension, the pair (a, b) is stabilizable if and only if either b �= 0 (i.e.,
we can control x), or a < 0 (i.e., x goes to 0 on its own). By examining plots of f(p), it is easy to verify
that these conditions cause (14) to have a stable nonnegative fixed point. The third segment of Theorem 2.1
requires the pair (q, a) to be observable; in one dimension this occurs if and only if q �= 0.

In the LQR problem, q and q̂ are nonnegative and r is positive. As an example of what can happen
without these restrictions, note that when q = 0, q̂ = 0, and r < 0, the resulting set of possible J values is
not bounded below, (consider for instance the family of control functions {uk(t)}∞k=1 where uk(t) = k for all
t). Difficulties can also arise when r = 0. For instance with q = 1, q̂ = 0, r = 0, and x0 = 1, the resulting
set of possible J values is given by (0,∞). This set is bounded below, but it has no minimum and so no
optimal u(t) exists.

3 A Geometric Characterization

In this section, we consider Algebraic Riccati Equations (1) in which the matrices A, C, and D are real,

AT P + PA + PCP + D = 0, A,C,D ∈ R
n×n, C = CT , D = DT . (15)

The solution matrices P can be either real or complex; our interest here is with matrices P = P T that
are real. Our first step is to move from matrices to mappings on abstract vector spaces. Let V be an
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n-dimensional vector space over C, and let V ′ be its dual2. With respect to a basis {ei} on V and its dual
basis {e′i} on V ′, the matrices in (15) define the following mappings

A : V −→ V, C : V ′ −→ V, D : V −→ V ′, and P : V −→ V ′. (16)

We use {ei} and {e′i} to define real vectors on V and V ′ respectively (see Appendix D), and so the mappings
in (16) are real. The same symbol denotes a matrix and its associated mapping, with the meaning of a
symbol always clear from its context. As we discuss in Appendix B.3, the matrix corresponding to the
natural adjoint P ′ of the mapping P : V −→ V ′ is the transpose (no conjugate) of the matrix corresponding
to P , even when the matrix entries are complex. The natural adjoints of the mappings in (16) are given by

A′ : V ′ −→ V ′ such that 〈A′ξ, x〉
V

= 〈ξ,Ax〉
V

for all x ∈ V, ξ ∈ V ′,
C ′ : V ′ −→ V such that 〈ξ, C ′η〉

V
= 〈η, Cξ〉

V
for all ξ, η ∈ V ′,

D′ : V −→ V ′ such that 〈D′x, y〉
V

= 〈Dy, x〉
V

for all x, y ∈ V,
P ′ : V −→ V ′ such that 〈P ′x, y〉

V
= 〈Py, x〉

V
for all x, y ∈ V,

(17)

where 〈ξ, x〉
V

denotes ξ(x), with ξ ∈ V ′ and x ∈ V . We define a new vector space W = V ⊕V ′, with elements
written as [x ξ]T , where x ∈ V and ξ ∈ V ′, and we use the union of real bases on V and V ′ to define real
vectors on W . We turn W into a symplectic vector space by pairing it with a symplectic bilinear form σ on
W , given by

σ(
[
x
ξ

]
,

[
y
η

]
) = 〈ξ, y〉

V
− 〈η, x〉

V
. (18)

The basic properties of σ are

σ(X,Y ) = −σ(Y,X), and σ(X,Y ) = 0 ∀Y ∈ W =⇒ X = 0, (19)

and in fact we show in C.1 that any symplectic bilinear form on an even dimensional vector space can be
expressed as (18). Let Q(X,Y ) be the following symmetric bilinear form on W

Q(
[
x
ξ

]
,

[
y
η

]
) = 〈Dx, y〉

V
+ 〈η,Ax〉

V
+ 〈ξ,Ay〉

V
+ 〈η, Cξ〉

V
. (20)

We now show that matrix solutions P = P T of (15) correspond to Lagrangian graph subspaces of W over
which Q = 0.

• A subspace Λ ⊂ W is called Lagrangian if it is equal to its symplectic complement (given by the set of
vectors in W that are σ-orthogonal to Λ).

• A subspace Λ ⊂ W is called a graph space if it can be written as

Λ = {
[

x
Px

]
: x ∈ V }, (21)

where P ∈ L(V ′, V ). With π : W −→ V the natural projection defined by π([x y]T ) = x, we show in
C.2 that Λ ⊂ W can be written as (21) if and only if π|Λ is a bijection.

In C.3, we show that the graph space Λ ⊂ W is Lagrangian if and only if P from the graph space repre-
sentation is equal to its natural adjoint. Now suppose that Q vanishes identically on a Lagrangian graph
subspace of W . Then, using (20),

0 = Q(
[

x
Px

]
,

[
y

Py

]
) = 〈Dx, y〉

V
+ 〈Py,Ax〉

V
+ 〈Px,Ay〉

V
+ 〈Py,CPx〉

V

= 〈(PA + A′P + D + PCP )x, y〉
V
, (22)

for all x, y ∈ V , and so (15) holds3. Conversely, if P = P T is a solution to (15), then it corresponds to a
Lagrangian graph subspace of W over which Q vanishes. These findings are illustrated in Figure 2.

2As discussed in Section 4, the following development works just as well (but with less elegance) if V ′ is replaced by V , and
if the natural pairing between vectors and functionals is replaced by an inner product on V .

3In detail, x in (22)2 is acted on by a linear map from V to V ′, which we have argued is equal to zero. The corresponding
equation in matrices is (15), and so the matrix corresponding to the map P satisfies the ARE. Because P = P ′, the matrix is
equal to its transpose.
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W = V ⊕ V ′
Λ is Lagrangian:
·Λ⊥ = Λ
·dim Λ = 1

2 dim W

Q = 0

Λ is a Graph Space:
·Λ = {[x Px]T |x∈V }


π|Λ is a bijection

ARE Solutions

P = P ′

Figure 2: This diagram summarizes the subspaces of W that we use to characterize solutions to (15). Graph
subspaces are Lagrangian if and only if P = P ′. Lagrangian graph subspaces on which Q = 0 correspond to
the desired solutions.

At this point we have characterized the symmetric matrix solutions of (15). To characterize the real
symmetric matrix solutions of (15), we must consider the structure of W in further detail. Let q(X) =
Q(X,X) be the quadratic form associated with Q,

q(
[
x
ξ

]
) = 〈Dx, x〉

V
+ 〈ξ,Ax〉

V
+ 〈ξ,Ax〉

V
+ 〈ξ, Cξ〉

V
. (23)

The Hamiltonian4 F of q is a real operator on W defined by

F =
1
2

[
p′′ξx p′′ξξ

p′′xx p′′xξ

]
=

[
A C
−D −A′

]
. (24)

In C.4 we show that F can also be defined by the following (coordinate invariant) equation,

σ(X,FY ) = Q(X,Y ), X, Y ∈ W. (25)

It follows (see C.7) that a Lagrangian subspace on which Q vanishes is equivalent to one which is invariant
under F , and that solutions to (15) correspond to F -invariant Lagrangian graph subspaces of W . We let
Vλ ⊂ W denote the space of generalized eigenvectors of F belonging to the eigenvalue λ ∈ Spec(F ). In C.8,
we establish that

λ1 + λ2 �= 0 =⇒ σ(Vλ1 , Vλ2) = 0, (26)

from which it follows (see C.9) that

λ ∈ Spec(F ) =⇒ −λ, λ̄,−λ̄ ∈ Spec(F ), (27)

and also (see C.10) that for λ �= 0, Vλ is the dual space of V−λ according to

Vλ
α� V ′

−λ, α(X)(Y ) = σ(X,Y ), X ∈ Vλ, Y ∈ V−λ. (28)

It follows (see C.11) that Vλ ⊕V−λ is a symplectic vector space, and (see C.13) that V0 is symplectic as well.

In C.15, we show that a Lagrangian subspace Λ ⊂ W is invariant under F if and only if

Λ =

(⊕
λ∈Σ

Λλ

)
⊕ Λ0, (29)

4An alternate terminology is to call q the Hamiltonian of the vector field F on W .
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where each Λλ is an F -invariant Lagrangian subspace of Vλ ⊕ V−λ, where Λ0 is an F -invariant Lagrangian
subspace of V0, and where Σ is some set satisfying Σ ∪ (−Σ) = Spec(F )\{0} and Σ ∩ (−Σ) = ∅. The set Σ
causes (29) to include an F -invariant Lagrangian subspace of each Vλ ⊕ V−λ, (we note that Vλ ⊕ V−λ is the
same as V−λ ⊕ Vλ). It is the specification of these subspaces that affects the resulting Λ.

We now consider the special case in which

Spec(F ) ∩ iR = ∅. (30)

Let λ1, . . . , λm be the real eigenvalues of F with positive real parts, and let μ1, . . . , μn be the eigenvalues of
F in the first quadrant of C, (i.e., with positive real and imaginary parts). Note that W can be decomposed
as the direct sum of W1, W2, and W3, where

W1 =
m⊕

i=1

(Vλi
⊕ V−λi

), W2 =
n⊕

i=1

(Vμi
⊕ V−μi

), W3 =
n⊕

i=1

(Vμ̄i
⊕ V−μ̄i

). (31)

To construct Λ as in (29), we need to choose F -invariant Lagrangian subspaces of the terms in parenthesis.
Two obvious such subspaces of Vα⊕V−α (with α equal to λi, μi, or μ̄i) are Vα and V−α (see C.16 for details).
The possible combinations of these subspaces give 2m+2n different F -invariant Lagrangian subspaces Λ of
W . Several of these lead to the desired real solutions of (15). In particular, if we choose Vμi

and Vμ̄i
(or

V−μi
and V−μ̄i

) as the subspaces of Vμi
⊕ V−μi

and Vμ̄i
⊕ V−μ̄i

respectively, then when these are combined
in the direct sum (29), the resulting space is spanned by real vectors in W (see C.17). Of course, V±λi

is
spanned by real vectors as well. It follows that Λ is a real F -invariant Lagrangian subspace of W .

In order for the F -invariant Lagrangian Λ to correspond to a symmetric matrix solution of (15), Λ must
also be a graph space. We now claim that π|Λ is a bijection (recall that this implies Λ is a graph space)
if 〈ξ, Cξ〉

V
is non-degenerate, (i.e., if 〈ξ, Cξ〉

V
only if ξ = 0). The domain Λ and target space V of π|Λ

have the same dimension, and so bijectivity is equivalent to injectivity. We establish injectivity by showing
that ker(π|Λ) = {[0 0]T}. If [x ξ]T ∈ Λ gets mapped to 0 by π|Λ, then clearly x = 0. Next, because the
F -invariance of Λ is equivalent to the vanishing of Q (and hence q) on Λ, we have

q(
[
0
ξ

]
) = 〈ξ, Cξ〉

V
= 0. (32)

But 〈ξ, Cξ〉
V

is non-degenerate and so ξ = 0 as desired. Thus the F -invariant Lagrangian Λ is a graph space
as desired, and can be written as Λ = {[v Pv]T |v ∈ V }. The mapping P in this representation satisfies
P = P ′, and the associated symmetric matrix solves (15).

We now argue that the map P : V −→ V ′ found above is real. It then follows that the matrix of P with
respect to the bases {ei} and {e′i} (introduced at the begining of this section) consists of real numbers. Real
vectors in W = V ⊕ V ′ are combinations over R of the following real basis on W

{
[
e1

0

]
,

[
e2

0

]
, . . . ,

[
en

0

]
,

[
0
e′1

]
,

[
0
e′2

]
, . . . ,

[
0
e′n

]
}. (33)

We showed that Λ is spanned over C by real vectors in W , and so it follows that Λ has a real basis {[bi ci]T},
each element of which is an R combination of the elements in (33). We also showed that

Λ = {
[

v
Pv

]
|v ∈ V }, (34)

and so it must be that the C-span of the bi’s is V , (in (34) we can pick v to be any element of V ). Pick any
real u ∈ V , that is, pick u =

∑
γibi where every γi is real. Note that

∑
γi[bi ci]T is in Λ. We know from

(34) that every element of Λ is given by [v Pv]T where v ∈ V , and so it must be that Pu =
∑

γici, which
is a real vector in V ′. Thus P is a real map as desired.

4 An Alternative Development

Here we consider an alternative method of establishing the core objects W , σ, and Q from Section 3. Rather
than have V ′ be the dual of V , we set V ′ equal to V , so that W becomes V ⊕V . In this context, 〈•, •〉

V
now
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stands for an inner product on V , instead of a pairing between functionals and vectors. This inner product is
an addition to the discourse beyond what is needed using the natural development from Section 3, however
this aesthetic disadvantage is balanced by the benefit of working on familiar ground (engineers are generally
more at home with inner products than with dual spaces). Because the matrices in (15) are real, the formal
development from the first part of Section 3 is unaffected by this change. We now undertake this approach
in one dimension, where the resulting constructions are easy to visualize. Spatial intuition in this simple
case is a valuable guide for similar constructions in higher dimensions.

4.1 A One Dimensional Example

Here we consider the simple but nontrivial one dimensional ARE, which is the following scalar quadratic
equation in x

cx2 + 2ax + d = 0. (35)

The low dimensionality of this equation makes it possible to visualize the associated geometric constructions
from Section 3, for instance V is simply R and W = V ⊕ V is simply R

2. With an inner product on V = R

given by scalar multiplication, the symplectic bilinear form σ on W defined by (18) becomes

σ(
[
x1

x2

]
,

[
y1

y2

]
) = x2y1 − y2x1 = det(

[
y1 x1

y2 x2

]
). (36)

Therefore σ(u, v) returns the (signed) area of the parallelogram associated with u and v.

Figure 3: The symplectic bilinear form σ returns the (signed) area of the parallelogram associated with its
input vectors, and the Lagrangian subspaces of W = R

2 are lines in R
2 through the origin.

A Lagrangian subspace Λ of W = R
2 must satisfy dim Λ = 1

2 dim W = 1 (which requires Λ to be a
line through the origin). The additional requirement that every vector in Λ be σ-orthogonal to every other
vector in Λ is trivially satisfied in this case; if u and v correspond to points on a line through the origin,
then σ(u, v) = 0 because the parallelogram associated with u and v has zero area.

Graph subspaces of W = R
2 can be written as {[α xα]T |α ∈ R}, and therefore consist of non-vertical lines

through the origin. We have already established that lines through the origin correspond to the Lagrangian
subspaces of W , and so the Lagrangian graph subspaces of W are simply the graph subspaces of W .

The major geometric characterization from Section 3 is that ARE solutions correspond to Lagrangian
graph subspaces of W on which the symmetric bilinear form Q vanishes. In our one dimensional example,
Q is given by

Q(
[
x1

x2

]
,

[
y1

y2

]
) =

[
x1 x2

] [
d a
a c

] [
y1

y2

]
(37)

Lagrangian graph subspaces in our problem are non-vertical lines through the origin, and so our interest is
in Q restricted to these lines. In particular, we are interested in finding vectors u = [x1 x2]T with x1 �= 0
such that Q(αu, βu) = αβQ(u, u) = 0 for all α, β ∈ R. Note that Q(u, u) defines the quadratic form q(u),
which can be visualized (see Figure 4) as a surface above W = R

2. The claim in Section 3 is that solutions
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Figure 4: Here we illustrate three possible types of quadratic form p as surfaces above W . Each surface
is accompanied by its corresponding level set. Non-vertical lines in the level set which includes the origin
correspond to real solutions of (35). In the left most image there are no real solutions, in the middle image
there is one real solution, and in the image at right there are two real solutions.

to the quadratic equation correspond to non-vertical lines through the origin along which q equals zero. The
set in W over which q = 0 is simply the level set of q which includes the origin, (see Figure 4 for an example
of these level sets and their corresponding surfaces). This correspondence is easy to verify analytically; any
non-vertical line in W can be written as the span of a vector of the form [1 x]T , and

q(
[
1
x

]
) = 0 ←→ cx2 + 2ax + d = 0. (38)

5 Computing Solutions

Here we demonstrate the development in Section 3 by constructing solutions to an ARE in Matlab. Suppose
our interest is with solutions to (15), where A, C, and D are given by

A =
[
1 2
3 4

]
, C =

[
2 0
0 1

]
, D =

[
1 2
2 1

]
. (39)

We start by entering these arrays into Matlab, and by concatenating them to create F

A=[1 2;3 4];
C=[2 0;0 1];
D=[1 2;2 1];
F=[A C;-D -A’];

Next we find the eigenvalues and eigenvectors of F

[evecs,evals]=eig(F);
evals=diag(evals);

There are four distinct real eigenvalues and corresponding eigenvectors. Following the development from the
last paragraph in Section 3, the span of any two of the eigenvectors is F -invariant Lagrangian subspace Λ
(and thus a prospective ARE solution). In Matlab, these two eigenvectors are 4 × 1 arrays, and stacking
them next to one another gives a 4 × 2 array [X;Y], where X and Y are 2 × 2 arrays. The ARE solution is
the array P for which PX=Y. Matlab commands for constructing P in this way, and for testing that it satisfies
the ARE are

L=evecs(:,[1 4]);
P=L(3:4,:)/L(1:2,:)
Error=A’*P+P’*A+P’*C*P+D
P =
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0.61431613579618 -0.54712432051509
-0.54712432051509 0.07305870788308

Error =
1.0e-14 *
-0.04440892098501 -0.13322676295502
-0.13322676295502 0.11102230246252

It follows that the computed solution P satisfies the ARE to numerical precision. Trying the other three
possible eigenvector combinations gives three additional solutions, all of which also satisfy the ARE to
numerical precision:

P =
-0.70796721149692 -0.09939673897232
-0.09939673897232 -0.07854267746637

P =
-2.46072866126682 -3.90060326102768
-3.90060326102768 -3.58406557700616

P =
-2.53652935394154 -3.45287567948491
-3.45287567948491 -6.22863227159236

Note that only the first of our four solutions is positive definite.

6 Additional Questions

We conclude our geometric characterization of the ARE solutions set with a host of interesting questions
that require further investigation. The ARE (1) is a special case of the Algebraic Riccati Inequality,

A∗P + PA + PDP + C ≥ 0, (40)

and so it would be interesting to use the geometry of Lagrangian subspaces and symplectic forms to consider
the matrices P that satisfy (40). To this end, Andrew Packard has suggested consideration of the papers by
Gohberg, Lancaster, and Rodman.

Alan Weinstein has suggested that the non-graph F -invariant Lagrangian subspaces of W may correspond
to something interesting in the context of AREs. Doubtless this is so, however we leave an investigation of
this idea for another thesis.

Although in Section 3 we did obtain a sufficient condition for the existence of real symmetric solutions
to (15), (i.e., Spec(F ) ∩ iR = ∅ and 〈ξ, Cξ〉

V
= 0 =⇒ ξ = 0), we did not prove the existence and uniqueness

results from LQR theory. Such a proof would begin with the translation of conditions such as controllability
and observability into the language of symplectic forms used in Section 3.

A final tantalizing challenge is given by the characterization of basin boundaries for the flow associated
with the Riccati differential equation. In the one dimensional case pictured in Figure 1, the positive ARE
solution attracts initial conditions on the interval (p1,∞), where p1 is a negative ARE solution. In higher
dimensions, the basin boundaries are doubtless beautiful and intriguing.

A LQR Optimality Conditions

Given ẋ = Ax + Bu with x ∈ R
m and u ∈ R

n, and an arbitrary initial condition x(0) = z, we wish to find a
control signal u(t) which minimizes the cost function

J =
∫ T

0

(xT Qx + uT Ru)dt + x̂T Q̂x̂, (41)
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where x̂ = x(T ). Let {t0, t1, t2, . . . , tN} be a collection of N + 1 evenly spaced points on [0, T ], (with
h = T/N and tk = kh). If u : [0, t] −→ R

m is a smooth5 control signal, then the collection of state vectors
{x0, x1, . . . , xN} established by

xk+1 = xk + h(Axk + Bu(tk)) (42)

with x0 = z satisfies max |xk − x(tk)| −→ 0 as N −→ ∞, where x(t) is the solution to the continuous
problem. Equivalently, these state vectors can be defined by the matrix equation⎡

⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xN

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

hB
AhB hB
A2hB AhB hB

...
...

...
. . .

AN−1hB AN−2hB AN−3hB . . . hB

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

u(t0)
u(t1)
u(t2)

...
u(tN−1)

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

z
Az
A2z

...
AN−1z

⎤
⎥⎥⎥⎥⎥⎦ (43)

where A = (I + hA). We abbreviate this equation as X = AU + Z. The cost function J defined in (41) can
be approximated arbitrarily well as N gets big by J̃ = XT QX + UTRU, where

Q =

⎡
⎢⎢⎢⎢⎢⎣

hQ
hQ

. . .
hQ

hQ + Q̂

⎤
⎥⎥⎥⎥⎥⎦ and R =

⎡
⎢⎢⎢⎢⎢⎣

hR
hR

. . .
hR

hR

⎤
⎥⎥⎥⎥⎥⎦ . (44)

Having described the effect of a continuous control signal on the given system in the discrete setting, we now
consider minimizing J . Our strategy is to find a U which minimizes J̃ (for each N), and then to take the
limit as N −→ ∞. Substituting X = AU + Z into the expression for J̃ , and differentiating with respect to
the components of U, we find that

∂J̃

∂U
= 0 ⇐⇒ U = −R−1AT QX. (45)

In matrix form, this necessary condition for the minimization of J̃ can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t0)
u(t1)
u(t2)

...
u(tN−3)
u(tN−2)
u(tN−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −R−1BT

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hQ AT hQ (AT )2hQ · · · (AT )N−2hQ (AT )N−1(hQ + Q̂)
hQ AT hQ · · · (AT )N−3hQ (AT )N−2(hQ + Q̂)

hQ · · · (AT )N−4hQ (AT )N−3(hQ + Q̂)
. . .

...
...

AT hQ (AT )2(hQ + Q̂)
hQ AT (hQ + Q̂)

hQ + Q̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xN−2

xN−1

xN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

Because the xi’s are related by (42), we now see that condition (46) can be written as the difference equation

u(tk−1) = −R−1BT Pkxk. (47)

A sequence of matrices {Pk} which makes (47) equivalent to (46) as desired can be obtained by substituting
(47) into (46). From the last row of (46), we obtain PN = Q̂ + hQ, and from the other rows, in combination
with (42), we obtain

Pk =(I + hAT )Pk+1(I + hBR−1BT Pk+1)−1(I + hA) + hQ

=Pk+1 + h(Q + AT Pk+1 + Pk+1A − Pk+1BR−1BT Pk+1) + O(h2). (48)

for k = 1, 2, . . . , N −1. From the first equality, it follows that if R = RT , then Pk+1 = P T

k+1 implies Pk = P T

k ,
and so if Q and Q̂ are symmetric, then Pk = P T

k for all k. Assuming this symmetry in R, Q, and Q̂, we note

5We require u to be smooth because this causes the LQR problem to give rise to the ARE, which is our main interest in this
work. We note however that it is entirely possible for u to be chosen from a less restricted class of functions. Many optimal
control problems are solved by “bang-bang” control strategies that consist of impulses, (see for instance the problem of moving
a space craft from one orbit to another with a minimum of fuel).
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that in the limit as N −→ ∞, (48) becomes the following Riccati differential equation for the symmetric
matrix P (t),

−Ṗ = Q + AT P + PA − PBR−1BT P, (49)

and PN = Q̂ + hQ becomes the final condition P (T ) = Q̂; P (t) is found by integrating (49) backwards in
time from T to t < T . Also as N −→ ∞, (47) becomes the following condition on u(t),

u(t) = −R−1BT P (t)x(t) (50)

Although we derived (50) as a necessary condition on a control signal u(t) that minimizes J , this condition
obviously (and amazingly) comprises a feedback control law that can be used to compute u(t) as the system
evolves. We note that this law is independent of the initial sate z. Also, P (t) in (50) is independent of x(t),
and so it can be computed ahead of time, so as to provide via feedback the optimal control signal u(t) at
any time, and for any system state x(t).

A.1 Causality in the Discrete Setting

The transition from a necessary condition to a feedback control law is more involved in the discrete case.
Because of (42), u(tk) can only affect xl with l > k, (this is apparent in (46) and (47)). A control law
however needs to return uk given nothing further advanced in time than xk. We can get around this causal
barrier by combining (42) with (47) to obtain

(I + hR−1BT Pk+1B)uk = −R−1BT Pk+1(I + hA)xk (51)

Thus as in the continuous case, we now have a feedback control law for computing uk. We note that (51)
approaches (50) as N gets big.

B Definitions

In view of the varied conventions used in different texts, in this appendix, we provide a short list of our
definitions.

B.1 Definitions from Linear Systems Theory

The definitions here are needed for Theorem 2.1 in Section 2. Although these definitions hold just as well
for matrices over C, our LQR problem is over R, and so we let A, B, and Q be real n×n, n×m, and m×n
matrices respectively.

controllable subspace
The controllable subspace CA,B of the matrix pair (A,B) is defined as the range of the n×mn matrix
[B AB A2B · · ·An−1B].

controllable
The matrix pair (A,B) is called controllable if its controllable subspace CA,B has dimension n. We note
that (A,B) is controllable if and only if the eigenvalues of A + BK can take on arbitrary prescribed
values by appropriately choosing K.

stabilizable
The matrix pair (A,B) is called stabilizable if there exists a K such that the eigenvalues of A + BK
are in the open left half plane. Obviously, if (A,B) is controllable, then it is stabilizable.

observable and detectable
The matrix pair (Q,A) is called observable (detectable) if (AT , QT ) is controllable (stabilizable).

These terms derive from the behavior of the linear system ẋ = Ax+Bu, y = Qx associated with the matrices
A, B, and Q. For instance, if (A,B) is controllable, then for an arbitrary initial state x1 at time t1, and an
arbitrary target state x2, there exists a finite time t2 > t1 and a control signal u(t) over [t1, t2] which moves
the system from x1 at time t1 to x2 at time t2.
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B.2 Definitions from Section 3

direct sum
If V and W are vector spaces over F, then we define their direct sum V ⊕W to be a vector space over
F given by the Cartesian product V ×W endowed with the obvious addition and scalar multiplication:

(v1, w1) + (v2, w2) �→ (v1 + v2, w1 + w2), and α(v, w) �→ (αv, αw). (52)

bilinear operator
Given three vector spaces V , W , and X over the same base field F, a bilinear operator is a function
B : V × W −→ X such that for any w ∈ W , the map v �→ B(v, w) is a linear operator from V to X,
and for any v ∈ V , the map w �→ B(v, w) is a linear operator from W to X.

– If V = W and B(v, w) = B(w, v) for all v, w ∈ V , then we say that B is symmetric.

– If V = W and B(v, w) = B(w, v) for all v, w ∈ V , we say B is conjugate symmetric.

– When X = F, we call B a bilinear form.

quadratic form
Let V be a vector space over a field F. A map Q : V −→ F is called a quadratic form on V if

– Q(αv) = α2Q(v) for all α ∈ F and v ∈ V .

– B(u, v) = Q(u + v) − Q(u) − Q(v) is a bilinear form on V .

non-degeneracy
A bilinear form B : U × V −→ F is called non-degenerate when B(u, v) = 0 ∀u =⇒ v = 0, and
B(u, v) = 0 ∀v =⇒ u = 0. Of course for this to happen, we need dim(U) = dim(V ). If U = V ,
then B(u, u) = 0 only if u = 0, and if B maps to R when both its arguments are the same, then by
continuity, either B(x, x) > 0 or B(x, x) < 0 for all x �= 0. In the first case B is called positive.

inner product
An inner product on a vector space V over C is a conjugate symmetric, positive, non-degenerate bilinear
form on V , (with the conjugate requirement vanishing in the case that V is a vector space over R).

positive definite
An operator C on an inner product space (V, 〈•, •〉) is said to be positive definite if 〈Cx, x〉 ≥ 0∀x ∈ V ,
with 〈Cx, x〉 = 0 only if x = 0.

symplectic
A bilinear form B is called symplectic if it is non-degenerate and if B(u, v) = −B(v, u). As for etymo-
logical origins, the adjective symplectic derives from the Greek symplektikos which means intertwining.
The associated Greek verb symplekein means to plait together or intertwine [8].

symplectic vector space
A vector space endowed with a symplectic bilinear form is called a symplectic vector space.

symplectic complement
Let W be a symplectic vector space with symplectic form σ. If Λ is a subspace of W , then we define
its symplectic complement Λ⊥ by

Λ⊥ = {v ∈ W |σ(v, w) = 0 for all w ∈ Λ} (53)

We note that (Λ⊥)⊥ = Λ and that dim Λ + dim Λ⊥ = dim W . Also, Λ ⊂ Λ⊥ is equivalent to

X,Y ∈ Λ =⇒ σ(X,Y ) = 0, (54)

and Λ⊥ ⊂ Λ is equivalent to
σ(X,Y ) = 0 ∀X ∈ Λ =⇒ Y ∈ Λ. (55)

There are many different ways in which Λ can relate to Λ⊥. The two of interest to us are as follows:

– if Λ ∩ Λ⊥ = {0},then Λ is called symplectic. Λ is symplectic if and only if σ restricts to a non-
degenerate form on Λ. A symplectic subspace with the restricted form is a symplectic vector
space in its own right.
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– if Λ = Λ⊥ then Λ is called Lagrangian. If Λ is a Lagrangian subspace of W , then dim(Λ) =
1
2 dim(W ).

dual space
The dual space of a finite dimensional vector space V is given by L(V, F) and is denoted V ′. The
mappings comprising V ′ are referred to as functionals. The dual space V ′ has the same dimension as
V , as can be seen by noting that V ′ is isomorphic to the space of 1×dim(V ) matrices.

B.3 Adjoints

In this section, we discuss the meanings of the word adjoint used in this report. We begin with a definition
of the adjoint of a map between inner product spaces.

A adjoint:
If A : U −→ V , then the adjoint A∗ of A is given by A∗ : V −→ U such that 〈A∗v, u〉

U
= 〈v,Au〉

V
for

all u ∈ U and for all v ∈ V , where 〈•, •〉
U

and 〈•, •〉
V

are inner products on U and V respectively. As a
diagram, this definition becomes

A : U V�

〈A∗v, u〉
U

= 〈v,Au〉
V

V : A∗U �

∀u ∈ U
∀v ∈ V

We let M(A, {ui}, {vi}) denote the matrix of a map A : U −→ V with respect to a basis {ui}m
i=1 on U

and a basis {vi}n
i=1 on V . If aij is a generic element at row i and column j of this matrix, then Auj =

a1jv1 + a2jv2 + · · ·+ anjvn. It follows that if the bases {ui} and {vi} are orthonormal with respect to 〈•, •〉
U

and 〈•, •〉
V

respectively, then M(A∗, {vi}, {ui}) is the conjugate transpose of M(A, {ui}, {vi}). With this in
mind, we define the adjoint of a matrix in the obvious way,

B matrix adjoint:
The matrix adjoint of a matrix is its conjugate transpose.

The next definition makes use of the dual space V ′ naturally associated with a vector space V . If x ∈ V and
ξ ∈ V ′, then we let 〈ξ, x〉

V
denote ξ(x), where the subscript V indicates that elements from V are considered

vectors, and elements from the dual space V ′ are considered functionals. This pairing of elements from V
and V ′ is highly symmetrical; because the dual of V ′ is simply V again, we find it pleasing to think of V
and V ′ not as one deriving from the other but as two sides of the same coin. In particular, we note that
〈ξ, x〉

V
= 〈x, ξ〉

V ′, where on the right, ξ ∈ V ′ is considered a vector and x ∈ V is considered a functional.

C natural adjoint:
If A : U −→ V , then we define the natural adjoint A′ of A by A′ : V ′ −→ U ′ such that 〈A′ω, v〉

V
=

〈ω,Av〉
U

for all ω ∈ U ′ and for all v ∈ V , where 〈•, •〉
U

and 〈•, •〉
V

are as discussed immediately above.
As a diagram, this definition becomes

A : U V�

〈A′ω, v〉
V

= 〈ω,Av〉
U

V ′ : A′U ′ �

∀v ∈ V
∀ω ∈ V ′

The natural adjoint C requires fewer ingredients than the adjoint A (in particular U and V don’t have to
have inner products), and so it charms us with the aesthetics of minimalism. Unfortunately however, A and
C are irreconcilable in the complex setting, due to the necessary conjugate symmetry of any inner product
on a complex vector space, (i.e., inner products on complex vector spaces are hermitian). In detail, we make
the following

Claim: There are no isomorphisms IU : U ′ −→ U and IV : V ′ −→ V , and no inner products 〈•, •〉
U

and
〈•, •〉

V
for which the mappings A∗ : V −→ U and IU ◦ A′ ◦ I−1

V : V −→ U are the same.

Proof: First note that if {ui} and {vi} are bases on U and V , and if we construct the corresponding bases
{ũi} and {ṽi} on U ′ and V ′ (so that ũi(uj) = δij and ṽi(vj) = δij), then M(A′, {ṽi}, {ũi}) is the transpose
(no conjugate) of M(A, {ui}, {vi}). Now let {ui} and {vi} be orthonormal with respect to inner products
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on U and V . We established already that if M(A, {ui}, {vi}) = [aij ], then M(A∗, {vi}, {ui}) = [āji]. The
(i, j) element of M(IU ◦ A′ ◦ I−1

V , {vi}, {ui}) is given by

M(I−1
V , {vi}, {ṽi})M(A′, {ṽi}, {ũi})M(IU , {ũi}, {ui}) = eikalkflj , (56)

with summation on the repeated indices. There is no choice of [eik] and [flj ] which gives āji (the best we
can obtain is aji).�

In the case of real mappings however (as with the matrices in Section 3), definitions A and C can be made
to coincide.

C Theorems from Section 3

Here we offer detail on claims made in Section 3. As noted in Section 4, this development works just as well
if we replace V ′ with V , and if we replace 〈•, •〉

V
with an inner product on V . Each proof in this section

(and in fact in this entire thesis) is original, and not taken from any reference.

Theorem C.1 Any symplectic bilinear form σ(x, y) on an even dimensional vector space W can be expressed
in terms of some non-degenerate bilinear form 〈•, •〉 as 〈p1(x), p2(y)〉 − 〈p2(x), p1(y)〉. Here p1(x) is the
projection of x onto a subspace W1 of W , and p2(x) is the projection of x onto a subspace W2 of W , where
W1 ⊕ W2 = W , and dim W1 = dim W2 = 1

2 dim W .

Proof: We will build a basis (w1, . . . , wn, w̃1, . . . , w̃n) for the 2n dimensional space W so that the given sym-
plectic bilinear form has the desired representation, with W1 = span(w1, . . . , wn), W2 = span(w̃1, . . . , w̃n),
and

〈x, y〉 : = x1ỹ1 + x2ỹ2 + · · · + xnỹn, (57)
+ x̃1y1 + x̃2y2 + · · · + x̃nyn.

where xi and x̃i are the components of x with respect to the constructed basis according to

x = x1w1 + · · · + xnwn + x̃1w̃1 + · · · + x̃nw̃n. (58)

Our argument is inductive, and involves the construction of n subspaces V1, V2, . . . , Vn of W . Let V1 := W
and pick any nonzero w1 ∈ V1. Then pick w̃1 ∈ V1 so that σ(w1, w̃1) = 1. This is possible to do because σ is
symplectic and therefor non-degenerate on V1. Note that span({w1, w̃1}) is a 2-dimensional subspace of V1,
(w̃1 = κw1 isn’t possible because it would cause σ(w1, w̃1) = 0), and that a dimension 2(n − 1) subspace V2

exists such that σ(ω1, v) = 0 and σ(ω̃1, v) = 0 for all v ∈ V2. Note that V2 ⊕ span(w1, w̃1) = V1, and that
σ|V2 is a symplectic form over V2, and so by induction we obtain the desired basis elements.�

Theorem C.2 Λ ⊂ W can be written as {
[

x
Px

]
: x ∈ V } if and only if π|Λ is a bijection.

Proof: Let π : W −→ V be the natural projection defined by π([x y]T ) = x. If Λ ⊂ W is given by
{[x Px]T |x ∈ V }, then π̃ := π|Λ is clearly a bijection. For the converse, if Λ is a subspace of W for which
π̃ := π|Λ is a bijection, then π̃ ∈ L(Λ, V ), π̃−1∈ L(V,Λ), and x ∈ V gets sent by π̃−1 to [x y]T ∈ Λ. Composing
the linear map π̃−1 with the projection from [x y]T ∈ Λ to y ∈ V gives P ∈ L(V ) such that y = Px, allowing
Λ to be expressed as {[x Px]T |x ∈ V }.�
Theorem C.3 A subspace of W given by Λ = {[x Px]T |x ∈ V } is Lagrangian if and only if P = P ′.

Proof: If Λ is Lagrangian, then σ(X,Y ) = 0 for all X,Y ∈ Λ. Using (17)4, we note that

σ(X,Y ) = σ(
[

x
Px

]
,

[
y

Py

]
) = 〈Px, y〉

V
− 〈Py, x〉

V
= 〈Px, y〉

V
− 〈P ′x, y〉

V
= 〈(P − P ′)x, y〉

V
(59)

for all x, y ∈ V , and so we must have P = P ′. For the converse, let Λ = {[x Px]T |x ∈ V } with P = P ′. The
steps already taken show that σ(X,Y ) = 0 for all X,Y ∈ Λ. Now consider [x η]T ∈ W not in Λ, that is,
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with η �= Px. We want to show that some u ∈ V exists so that [u Pu]T ∈ Λ satisfies σ([x η]T , [u Pu]T ) �= 0.
Note that

σ(
[
x
η

]
,

[
u

Pu

]
) �= 0 ⇐⇒ 〈η, u〉

V
− (〈Pu, x〉

V
= 〈P ′x, u〉

V
= 〈Px, u〉

V

)
= 〈η − Px, u〉

V
�= 0 (60)

where we’ve used (17)4 and the hypothesis that P = P ′. If no such u exists, then 〈y − Px, u〉
V

= 0 for every
u ∈ V , in particular for u = η − Px. This however implies that η − Px = 0, which is a contradiction, and
so it must be that σ(X,Y ) = 0 ∀X ∈ Λ =⇒ Y ∈ Λ as desired. Finally, note that Λ is isomorphic to V , and
so dim Λ = dim V = 1

2 dim W . Thus Λ is Lagrangian as desired.�

Theorem C.4 The Hamiltonian F defined by F =
[

A C
−D −A′

]
can equivalently be defined by σ(X,FY ) =

Q(X,Y ) for all X,Y ∈ W .

Proof: Start with F : W −→ W written as

F =
[
F11 F12

F21 F22

]
. (61)

Then, σ(X,FY ) = Q(X,Y ) becomes

〈x2, F11y1 + F12y2〉
V
− 〈F21y1 + F22y2, x1〉

V
= 〈Dx1, y1〉

V
+ 〈y2, Ax1〉

V
+ 〈x2, Ay1〉

V
+ 〈y2, Cx2〉

V
(62)

where x1, x2, y1, and y2 are arbitrary vectors in V . Setting x2 and y2 to zero gives

− 〈F21y1, x1〉
V

= 〈Dx1, y1〉
V
, (63)

=⇒ 〈−F21y1, x1〉
V

= 〈D′y1, x1〉
V
,

from which it follows that F21 = −D′ = −D. Similarly, we find that F22 = −A′, F11 = A, and F12 = C.�

Theorem C.5 σ(X,FY ) + σ(FX, Y ) = 0

Proof:

σ(X,FY ) = Q(X,Y ) from C.4
= Q(Y,X) from the symmetry of Q
= σ(Y, FX) from C.4
= −σ(FX, Y ) from the skew-symmetry of σ.

Theorem C.6 Let B : V × V −→ F be a non-degenerate bilinear form on a finite dimensional vector space
V . For every functional ϕ in the dual space V ′, there exists a unique x ∈ V such that ϕ(y) = B(y, x) for all
y ∈ V .

Proof: Let {ei} be a basis for V . We need to show that a unique x =
∑

xiei exists so that ϕ(ei) = B(ei, x)
for each ei. Finding the xi’s is accomplished by solving⎡

⎢⎢⎢⎣
ϕ(e1)
ϕ(e2)

...
ϕ(en)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

B(e1, e1) B(e1, e2) · · · B(e1, en)
B(e2, e1) B(e2, e2) · · · B(e2, en)

...
...

...
B(en, e1) B(en, e2) · · · B(en, en)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ (64)

We’ll be done if we can show that the matrix is invertible. If the matrix isn’t invertible, then some nonzero
[x1, x2, · · · , xn]T gets mapped to zero, corresponding to a nonzero x for which B(ei, x) = 0 for each ei. This
implies that B(x, x) = 0 which contradicts the definition of B as a non-degenerate bilinear form.�

Theorem C.7 A Lagrangian subspace on which Q = 0 is equivalent to one which is invariant under F .

Proof: Let v ∈ Λ where Λ is a Lagrangian subspace. We need to show that Fv ∈ Λ if and only if Q vanishes
on Λ. If Q vanishes on Λ, then Q(u, v) = 0 for every u ∈ Λ. Using C.4, this becomes σ(u, Fv) = 0 for all
u ∈ Λ, which means that Fv ∈ Λ. For the converse, let Fv ∈ Λ, causing σ(u, Fv) = 0 for every u ∈ Λ. Using
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C.4 again we see that this implies Q(u, v) = 0 for every v ∈ Λ, and so Q vanishes on Λ as desired, (v was
chosen arbitrarily in Λ to begin with).�

Definition of VΛ

For any λ ∈ C, we let Vλ denote the subspace of W consisting of vectors v for which (F − λ)Nv = 0 for
N sufficiently large. Note that Vλ is defined for every λ ∈ C, whether or not λ ∈ Spec(F ). When λ is not
an eigenvalue of F , Vλ = {0}, otherwise Vλ is the nonzero space of generalized eigenvectors of F associated
with λ.

Theorem C.8 λ1 + λ2 �= 0 implies that σ(Vλ1 , Vλ2) = 0.

Proof: Start with λ1, λ2 ∈ C such that λ1 + λ2 �= 0. We suppose that λ1, λ2 ∈ Spec(F ) because if this is
false, then the theorem conclusion holds trivially. We first establish that (F + λ2)Vλ1 = Vλ1 , by showing
that (F + λ2) is a bijective linear operator on Vλ1 .

• We first show that (F + λ2) is a linear operator on Vλ1 .
v ∈ Vλ1 implies that for some N , (F − λ1)Nv = 0, which implies that (F + λ2)(F − λ1)Nv = 0. But
(F +λ2) commutes with (F −λ1)N , and so (F −λ1)N (F +λ2)v = 0, establishing that (F +λ2)v ∈ Vλ1

as desired. (We had to make sure that (F + λ2) didn’t map from Vλ1 to outside of Vλ1).

• Next we show that (F + λ2) is an injective linear operator on Vλ1 .
We need to show that 0 is the only vector in Vλ1 that is mapped to 0 by (F + λ2). If this is false, then
some nonzero v ∈ Vλ1 satisfies Fv = −λ2v. Because v ∈ Vλ1 , some N exists for which (F −λ1)Nv = 0.
But

(F − λ1)Nv = (F − λ1)(F − λ1) · · · (F − λ1)v = v(λ1 + λ2)N (−1)N �= 0, (65)

which is a contradiction.

An injective operator is also bijective, and so we are done. If (F + λ2)Vλ1 = Vλ1 , then (F + λ2)NVλ1 = Vλ1

for any N , and so
σ(Vλ1 , Vλ2) = σ((F + λ2)NVλ1 , Vλ2) = σ(Vλ1 , (−F + λ2)NVλ2), (66)

where the last equality is due to C.5 and the linearity of σ. Note that (−F + λ2)NVλ2 is 0 for N sufficiently
large, and so σ(Vλ1 , Vλ2) = 0 as desired.�

Theorem C.9 λ ∈ Spec(F ) implies that λ̄,−λ ∈ Spec(F ).

Proof: Let λ ∈ Spec(F ). Then Fv = λv implies F v̄ = λ̄v̄ (F = F̄ because F is composed of maps that are
real), and so λ̄ ∈ Spec(F ) as desired. To show that −λ ∈ Spec(F ), let v be a nonzero vector in Vλ. Using
C.8, we know that σ(v, Vμ) = 0 whenever μ �= −λ. If −λ was not an eigenvalue of F , then we would have
V−λ = {0}, causing σ(v, V−λ) = 0 as well. This means σ(v, w) = 0 for every w ∈ W , which contradicts the
fact that v �= 0 and that σ is non-degenerate. �

Theorem C.10 When λ �= 0, Vλ is the dual space of V−λ.

Proof: Let Vλ ⊂ W be given, and let V ′
λ denote its dual. Noting that σ is a symplectic bilinear form on W ,

we know from C.6 that every ϕ ∈ V ′
λ has a unique corresponding X ∈ W for which ϕ(Y ) = σ(Y,X) for all

Y ∈ Vλ. But in fact, from C.8, it must be that X only has components in V−λ. With {ϕi} a basis for V ′
λ,

and with {Xi} a collection of corresponding vectors in V−λ, we can establish a linear mapping from V ′
λ into

V−λ by ϕi �→ Xi.
Suppose that this mapping is not injective. Then it sends some nonzero functional ϕ = γ1ϕ1 + · · ·+γnϕn

to γ1X1 + · · · + γnXn = 0. Because ϕ ∈ V ′
λ is nonzero however, some nonzero Y ∈ Vλ exists for which

ϕ(Y ) �= 0. Note that

ϕ(Y ) = γ1ϕ1(Y ) + · · · + γnϕn(Y )
= γ1σ(Y,X1) + · · · + γnσ(Y,Xn)
= σ(Y, γ1X1 + · · · + γnXn)
= σ(Y, 0) = 0 (67)

which is a contradiction, and so the mapping is injective.
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To show surjectivity, suppose some nonzero X ∈ V−λ is beyond the range of the mapping. Then, consider
the functional ϕ(Y ) := σ(Y,X). From C.8, σ(Y,X) = 0 for every Y not in Vλ. If this functional was nonzero
for some Y ∈ Vλ, X would be within the range of our mapping, contrary to our supposition. So it must be
that σ(Y,X) = 0 for every Y in Vλ, and thus for every Y in W . But X �= 0 and so this contradicts the
non-degeneracy of σ.

Thus the proposed mapping is surjective and we have established a bijection between V ′
λ and V−λ. The

two are isomorphic, and we say that Vλ is the dual space of V−λ. In greater detail, V ′
−λ = {α(X) | X ∈ Vλ}

where α(X) : V−λ −→ C according to α(X)(Y ) �→ σ(X,Y ).�

Theorem C.11 When λ �= 0, Vλ ⊕ V−λ is a symplectic vector space under σ.

Proof: If σ is a symplectic bilinear form on W then clearly σ(X,Y ) = −σ(Y,X) for X,Y from any subspace
of W , however σ is not automatically non-degenerate on subspaces of W . For instance if σ is a symplectic
bilinear form on C

2, then σ is necessarily 0 on any one dimensional subspace, and so it is impossible to
satisfy

X �= 0 =⇒ ∃Y such that σ(X,Y ) �= 0. (68)

on this subspace. However this property does hold on Vλ ⊕ V−λ as we now show.
Pick any nonzero X ∈ Vλ ⊕ V−λ, and write X = X1 + X2, where X1 ∈ Vλ and X2 ∈ V−λ. Either X1

or X2 (or both) are nonzero. We suppose X1 is nonzero (the proof for X1 = 0 is similar). Suppose that no
Y ∈ V−λ exists for which σ(X1, Y ) �= 0. By C.8, σ(X1, Y ) = 0 for Y taken from every other subspace of
W , and so σ(X1, Y ) = 0 for every Y in W . But X �= 0, which contradicts the non-degeneracy of σ over W .
Thus it must be that some Y ∈ V−λ exists for which σ(X1, Y ) �= 0, and so σ is non-degenerate on Vλ ⊕ V−λ

as desired.�

Theorem C.12 If α �= β then Vα ∩ Vβ = {0}.
Proof: Let α �= β, and suppose that some nonzero v is in both Vα and Vβ . Then integers nα and nβ exist
so that (F − α)nαv = 0, (F − β)nβ v = 0, and (F − β)nβ−1v := ṽ �= 0. Note that (F − α)nα commutes with
(F − β)nβ−1, and so

(F − α)nαv = 0 =⇒ (F − β)nβ−1(F − α)nαv = 0 =⇒ (F − α)nα ṽ = 0. (69)

But F ṽ = βṽ, and so the right-hand equality in (69) becomes (β−α)nα = 0, which is a contradiction because
α �= β.�

Theorem C.13 V0 is a symplectic vector space under σ.

Proof: If V0 = {0} (that is, if 0 �= Spec(F )), then σ is trivially a symplectic bilinear form over V0, and V0 is
a symplectic vector space under σ. Now suppose 0 ∈ Spec(F ). In this case V0 contains more than the zero
vector, and in fact has even dimension, because in the following decomposition of the even dimensional W ,

W = V0 ⊕ (Vλ1 ⊕ V−λ1) ⊕ (Vλ2 ⊕ V−λ2) ⊕ + · · · + ⊕(Vλn
⊕ V−λn

). (70)

each term in parenthesis has even dimension, and none of these subspaces intersect (see C.12). Of course
σ(X,Y ) = −σ(X,Y ) for all X and Y in V0. To show the non-degeneracy of σ over V0, note that if X is a
nonzero vector in V0, then from C.8, σ(X,Y ) = 0 for every Y not in V0. As with C.11, it then follows that
there must be some Y ∈ V0 for which σ(X,Y ) �= 0, or else we would have σ(X,Y ) = 0 for every Y ∈ W
where X �= 0, contradicting the non-degeneracy of σ over W .�

Theorem C.14 If U ⊂ W is F -invariant, then U is equal to a direct sum of subspaces Ui of the subspaces
Vλi

of generalized eigenvectors of F .

Example over R: Consider the independent vectors e1 and e2 in R
2. Clearly R

2 = V1 ⊕ V2 where
V1 = span({e1}) and V2 = span({e2}). The subspace U = span({e1 +e2}) however is not given by the direct
sum of subspaces of the Vi’s.

Proof: Suppose the subspace U is not equal to the direct sum of any collection of subspaces Ui of Vλi
, where

Vλi
is the space of generalized eigenvectors associated with λi ∈ Spec(F ). The direct sum of the Vλi

’s is W ,
and so to every u ∈ U ⊂ W there corresponds a unique element ui of each Vλi

such that u = u1 + · · · + un.
It is easy to verify that because U is a subspace, the collection of all possible such ui’s forms a subspace Ui
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of Vλi
. This establishes that U ⊂ U1 ⊕ · · · ⊕ Un. Our hypothesis implies that this subset relation is strict,

that is, that some vector v1 + · · · + vn ∈ U1 ⊕ · · · ⊕ Un exists that isn’t in U , (keep in mind that vi ∈ Ui∀i).

In the proof of C.8, we established that λ1 + λ2 �= 0 implies (F + λ2)Vλ1 = Vλ1 , (equivalently that
λ1 �= λ2 implies (F − λ2)Vλ1 = Vλ1). Note that with d = dim(W ), (F − λi)d annihilates Vλi

. It follows
that Fλi

:= (F − λ2)d(F − λ3)d · · · (F − λn)d is a bijective operator on Vλ1 that annihilates every other Vλi
.

Similarly, we define Fλi
for each λi. Because Fλi

is a bijective operator on Vλi
, every vi ∈ Ui ⊂ Vλi

has a
pre-image v̂i ∈ Vλi

.

If one of the pre-images v̂i ∈ Vλi
is not in Ui, then Fλi

maps an entire subspace (e.g., αv̂i) into Ui ⊂ Vλi
.

But Fλi
is a bijective operator on Vλi

, and so to make room for the image of αv̂i, it must be that Fλi
moves

some vectors off of Ui. Let ui be one of these vectors. The corresponding vector in U gets mapped by Fλi
(a

polynomial in F ) to some vector in Vλi
that is not in Ui, that is, to a vector that is not in U . This establishes

that U is not invariant under F .

Now suppose that every pre-image v̂i ∈ Vλi
is in its respective Ui. To each of these pre-images there

corresponds a vector ui ∈ U such that Fλi
ui = vi. In words, the sum of polynomial functions of F applied

to vectors ui ∈ U is a vector v1 + · · · + vn that is not in U . Thus U is not invariant under F .�
Theorem C.15 F -invariant Lagrangian subspaces of W can be represented as

Λ =

(⊕
λ∈Σ

Λλ

)
⊕ Λ0, (71)

where Λλ and Λ0 are F -invariant Lagrangian subspaces of the symplectic spaces Vλ⊕V−λ and V0 respectively,
and Σ is a set satisfying Σ ∪ (−Σ) = Spec(F )\{0} and Σ ∩ (−Σ) = ∅.
Proof: Let Λ be an F -invariant Lagrangian subspace of W . Note that W can be expressed in terms of the
invariant subspaces of F as

W = (Vλ1 ⊕ V−λ1) ⊕ (Vλ2 ⊕ V−λ2) ⊕ · · · ⊕ (Vλn
⊕ V−λn

) ⊕ V0 (72)

where the V0 term is present only when 0 ∈ Spec(F ). If A = B ⊕ C, we let PB(v) denote the unique vector
in B corresponding to v ∈ A. With this in mind we define

Λλ = {PVλ⊕V−λ
(v)|v ∈ Λ}. (73)

Before proceeding, we caution that vector subspaces are generally not closed under a projection operation.
For instance if A (B) is the x1 (x2) axis, then A ⊕ B is R

2, and vectors in the subspace on which x1 = 2x2

will project to vectors not in this subspace. To show that Λλ is a Lagrangian subspace of Vλ ⊕ V−λ, we note
that

• Λ⊥
λ ⊂ Λλ ⇐⇒ σ(vλ, v̂λ) = 0 ∀vλ ∈ Λλ implies v̂λ ∈ Λλ

Start with v̂λ ∈ Vλ ⊕ V−λ that is not in Λλ. Note that v̂λ /∈ Λ, because if it was, we’d have v̂λ ∈ Λλ

contrary to hypothesis (note PVλ⊕V−λ
(v̂λ) = v̂λ). Because Λ is Lagrangian, some v ∈ Λ exists for which

σ(v, v̂λ) �= 0. By the linearity of σ and C.8, σ(vλ, v̂λ) �= 0, where vλ = PVλ⊕V−λ
(v) ∈ Λλ ⊂ Vλ ⊕ V−λ.

Thus we have shown that some vλ ∈ Vλ ⊕ V−λ exists in Λλ for which σ(vλ, v̂λ) �= 0.

• Λλ ⊂ Λ⊥
λ ⇐⇒ σ(vλ, v̂λ) = 0∀vλ, v̂λ ∈ Λλ

Given vλ, v̂λ ∈ Λλ, we know from the definition (73) of Λλ that vectors v and v̂ exist in Λ that are
projected by PVλ⊕V−λ

(•) to vλ and v̂λ respectively. Because Λ is an F -invariant subspace of W , we
know from C.14 that Λ is given by the direct sum of subspaces Ui of W , where each Ui is a subspace
of Vλi

⊕V−λi
. Of course, because Λ is Lagrangian, these Ui’s will end up having additional properties,

but these are of no concern to us right now. What matters is that any vector in the direct sum of the
Ui’s is in Λ. In particular, vλ and v̂λ are in Λ, and so σ(vλ, v̂λ) = 0, which is what we wanted to show.

• dim(Λλ) = 1
2 dim(Vλ ⊕ V−λ)

Let {bi} be a basis for Λλ, and define the operator Tλ on Vλ ⊕ V−λ by

Tλ(x) = b1σ(x, b1) + b2σ(x, b2) + · · · + bnσ(x, bn) (74)

Note that dim(Vλ ⊕ V−λ) = dim(ker(Tλ)) + dim(range(Tλ)), and so we’ll be done if we can show that
ker(Tλ) and range(Tλ) both equal Λλ.

18



– ker(Tλ) = Λλ

We’ve already established that Λλ = Λ⊥
λ , and so if x ∈ Λλ, then Tλ(x) = 0. If x /∈ Λλ, then some

y ∈ Λλ exists for which σ(x, y) �= 0, and so Tλ(x) �= 0.

– range(Tλ)) = Λλ

We need to show that for every bi, there is some ci ∈ Vλ ⊕ Vλ for which σ(bk, ci) is nonzero for
k = i, and zero for k �= i. We do this by defining the operator T on W as the sum of all the
Tλ’s. The same reasoning used to establish that ker(Tλ) = Λλ (above) shows that ker(T ) = Λ.
Of course dim(W ) = dim(ker(T )) + dim(range(T )). Because Λ is Lagrangian, it follows that
dim(range(T )) = dim(Λ). Note that T has the same form as Tλ, but with more bi’s. These bi’s
comprise a basis for Λ, and so range(T ) ⊂ Λ. It follows immediately that range(T ) = Λ, and so it
must be that for every bi, some c ∈ W causes σ(c, bk) to be zero (nonzero) for k = i (k �= i). When
bi is one of the basis elements of Λλ, we write the corresponding c as ci+ ĉ, where ci = PVλ⊕V−λ

(c).
Then from C.8 it follows that 0 �= σ(c, bi) = σ(ci, bi) + σ(ĉ, bi) = σ(ci, bi). Similarly, for any of
the other bk’s in Λλ, 0 = σ(c, bk) = σ(ci, bk) + σ(ĉ, bk) = σ(ci, bk), and so we are done.

To show that Λλ is invariant under F , we note that vλ ∈ Λλ implies the existence of some v ∈ Λ such that
PVλ⊕V−λ

(v) = vλ. We know that Λ is F -invariant, and so we’ll be done if we can show that F (PVλ⊕V−λ
(v)) =

PVλ⊕V−λ
(Fv). But this equality is obvious; the (Vλi

⊕V−λi
)’s are F -invariant. Writing v = vλ1+vλ2+· · ·+vλn

where vλi
∈ Vλi

⊕ V−λi
, we have Fv = Fvλ1 + Fvλ2 + · · · + Fvλn

, where Fvλi
∈ Vλi

⊕ V−λi
.

At this point we’ve constructed subspaces Λλ ⊂ Vλ ⊕ V−λ that are Lagrangian. Certainly Λ is a subset
of the direct sum of these subspaces. Equality follows from the fact that the dimension of the direct sum
equals the dimension of Λ. In detail,

dim(Λλ1 ⊕ · · · ⊕ Λλn
) = dim(Λλ1) + · · · + dim(Λλn

), (75)

where Λλi
has half the dimension of Vλi

⊕ V−λi
. It follows that the numbers dim(Λλi

) sum to half the
dimension of W , which is the same as the dimension of Λ.

Theorem C.16 When α �= 0, V±α is an F -invariant Lagrangian subspace of Vα ⊕ V−α.

Proof: The F -invariance is obvious, as is the dimensionality requirement. To show that the orthogonal
complement of V±α in Vα ⊕ V−α is exactly V±α, first note that from C.8, x, y ∈ V±α implies σ(x, y) = 0.
Next, pick some x ∈ Vα ⊕V−α that is not in V±α. We need to show that for some y ∈ V±α, σ(x, y) �= 0. If no
such y exists, then σ vanishes identically on Vα ⊕V−α. However this contradicts C.11, in which we establish
that Vα ⊕ V−α is a symplectic vector space under σ (recall from (19) that if σ(x, y) = 0 for all y ∈ S̃, then
x = 0, where S̃ is a symplectic vector space under σ).�

Theorem C.17 If μ ∈ Spec(F ) has positive real and imaginary parts, then Vμ⊕Vμ̄ is spanned by real vectors
in W .

Proof: If {bi} is a basis for Vμ, then every bi satisfies (F −μ)Nbi = 0 for some N , and so (F − μ̄)N b̄i = 0 as
well, showing that the vectors {b̄i} are all in Vμ̄. Every linear combination γib̄i of the b̄i’s is nonzero, because
if one wasn’t, then taking the conjugate would give a nonzero linear combination of the bi’s. It follows that
there are dim(Vμ) independent vectors in Vμ̄. If dim(Vμ̄) was greater than dim(Vμ), there would be a c ∈ Vμ̄

independent of the b̄i’s. Reusing our previous arguments (this time going from Vμ̄ to Vμ), we find that this
c would be a vector in Vμ independent of the bi’s. But this is impossible because {bi} is a basis for Vμ, and
so it must be that {b̄i} is a basis for Vμ̄. From C.12, we know that Vμ ∩ Vμ̄ = {0} and so the bi’s and b̄i’s
comprise a basis B for Vμ ⊕Vμ̄. Note that span(Re(bi), Im(bi)) = span(bi, b̄i). Replacing each conjugate pair
bi, b̄i in B with the real vectors Re(bi) and Im(bi) has no effect on the number of items in B or their span,
and so the real vectors Re(bi) and Im(bi) comprise a basis for Vμ ⊕ Vμ̄.�

D Field Switching

In this appendix we discuss moving back and forth between vector spaces over R and C.
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D.1 Real Objects in Vector Spaces over C

Let VC be an n-dimensional vector space over C. The following equivalent constructions establish the real
part, imaginary part, and conjugate of a vector in VC. Either of these constructions will be said to endow
VC with real content.

i. Choose a basis {ei} of VC. If v =
∑

(ai + ibi)ei is in VC, then we define the real part of v as
∑

aiei,
the imaginary part of v as i

∑
bkek, and the conjugate of v as

∑
(ak − ibk)ek.

ii. Choose a map K : VC −→ VC with the properties K(λv) = λ̄K(v), K2(v) = v, and K(u + v) =
K(u) + K(v). Such a map is referred to as a real structure, and serves as a conjugation operator on
VC. If v ∈ VC, then we define the real part of v as 1

2 (v +K(v)), the imaginary part of v as 1
2 (v−K(v)),

and the conjugate of v as K(v).

We use Re(v), Im(v), and v̄ to denote the real part, imaginary part, and conjugate of v respectively. A
vector with no imaginary part is called real, and a vector with no real part is called imaginary.

D.1.1 Real Maps

Let U and V be vector spaces over C with real content. We call A ∈ L(U, V ) a real map if it maps real
vectors in U to real vectors in V . If A is real then the matrix of A with respect to real bases in U and V
consists of real numbers.

D.1.2 Equivalent Definitions

Different bases in i. and real structures in ii. can endow VC with the same real content. For instance,

• if {ẽi} is a basis of VC such that the coefficients of each ẽi with respect to the {ei} basis from i. are real
numbers, then the real content on VC established by using {ẽi} in i. is the same as the real content on
VC established by using {ei}.

• if A is a real bijective linear operator on VC with respect to the real structure K, then the same real
content established by the real structure K is also established by the real structure A−1◦ K ◦ A.

D.1.3 Subspaces

In this section we discuss some of the many different conceptions of a real subspace of a complex vector space
with real content. We use only the first of these in the thesis; the remaining concepts (like totally real and
its relatives), are included for the sake of contrast. Let VC be an n-dimensional vector space over C with
real content.

• A subspace U ⊂ VC will be called real if it can be given as the C-span of real vectors in VC, (which
is equivalent to requiring that Ū = U). Obviously VC is a real subspace of itself. Also, we note that
subspaces of VC exist which are not real. For instance, if {ei} is a real basis of VC, then spanC({e1})
and spanC({ie2}) are real, but spanC({e1 + ie2}) is not real. One peculiarity of this definition is that
a real subspace of VC will always contain imaginary vectors, (for instance ie1 ∈ spanC({e1})).

The elements in the n-dimensional complex vector space VC comprise a 2n-dimensional vector space over R,
which we call VR. Unless otherwise noted, a subspace in this discussion inherits the field of its parent space.

• Let VC be a vector space over C with real content. If U is a subspace of VC, then we define the real
projection Re(U) of U by

Re(U) = {Re(u)|u ∈ U}. (76)

We note that Re(U) is merely a subset (not a subspace) of VC. However Re(U) is a subspace of the
2n-dimensional VR, and Re(U) is also a subspace of the n-dimensional spanR({ei}), where {ei} is a real
basis of VC. The inequality

dim(U) ≤ dim(Re(U)) ≤ min(2 dim(U), n) (77)

holds whether Re(U) is regarded as a subspace of VR or of spanR({ei}). For instance if the subspace
U of VC is given by the (1-dimensional) C-span of e1 + ie2, then Re(U) is given by the (2-dimensional)
R-span of e1 and e2.
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• A subspace U of VR is called totally real if U ∩ iU = {0}. We note that complex multiplication is well
defined on VR even though VR is a vector space over R. Also, VC need not have real content for this
definition to make sense.

• We call a subspace of VR entirely real (entirely imaginary) if it can be given as the R-span of real
(imaginary) vectors in VC. We call a subspace of VR entirely mixed if it can be given as the R-span of
both real and imaginary vectors in VC.

The following examples illustrate the distinction between the above subspaces of VR. We also show these
relationships in Figure 5.

- if U = spanR({e1}), then U is entirely real and totally real.

- if U = spanR({ie2}), then U is entirely imaginary and totally real.

- if U = spanR({e1, ie2}), then U is entirely mixed and totally real.

- if U = spanR({e1, ie1}), then U is entirely mixed but not totally real, (note that U = iU).

- if U = spanR({e1 + ie1}), or if U = spanR({e1 + ie2}), then U is totally real, however U is neither
entirely real, nor entirely imaginary, nor entirely mixed.

VR

totally real

entirely
mixed

entirely real

entirely imaginary

Figure 5: This diagram shows how the different subspaces of VR are related.

D.2 Moving from R to C

Here we use a vector space over R to construct a vector space over C. Although this material isn’t used in
the thesis, it is a natural complement to the previous section, and it can be used to understand some of the
ideas presented there. If U is an n-dimensional vector space over R, we define the complexification UC of U
to be the vector space U × U over C with

• addition defined component-wise: (u1, u2) + (v1, v2) := (u1 + v1, u2 + v2),

• scalar multiplication defined by: (αr + iαi) · (u1, u2) := (αru1 − αiu2, αru2 + αiu1).

We call u the real part and v the imaginary part of (u, v) ∈ UC. Vectors in UC with zero real (imaginary)
parts will be called imaginary (real), and we call (u,−v) the conjugate of (u, v). If {ek} is a basis for U , then
{(ek, 0)} is a basis for UC, and so dim(UC) = dim(U) as we might expect.

Linear Operators:
It is straightforward to show that F is a linear operator on UC if and only if F can be written as
(FR, FI) where FR and FI are linear operators on U , and where the action of F on an element of UC

is given by
(FR, FI)(ur, ui) = (FRur − FIui, FRui + FIur) (78)
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We call FR (FI) the real (imaginary) parts of F , and we call (FR, 0) ∈ L(UC) the complexification of
FR ∈ L(U).

Inner Products:
Starting with the inner product 〈•, •〉 on U , we can build a hermitian (i.e., conjugate symmetric) inner
product 〈•, •〉C on UC according to

〈(ur, ui), (vr, vi)〉C := 〈ur, vr〉 + 〈ui, vi〉 + i(〈ui, vr〉 − 〈ur, vi〉). (79)

Symplectic Forms:
Starting with the symplectic form σ : U ×U −→ R, we can build a symplectic form σC : UC×UC −→ C

according to
σC((ur, ui), (vr, vi)) = σ(ur, vr) − σ(ui, vi) + i(σ(ur, vi) + σ(ui, vr)). (80)

Symmetric Forms:
Starting with the symmetric form Q : U×U −→ R, we can build a symmetric form QQ : UC×UC −→ C

according to

QC((ur, ui), (vr, vi)) = Q(ur, vr) − Q(ui, vi) + i(Q(ur, vi) + Q(ui, vr)) (81)
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