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Stereographic projection is a way to flatten out the surface of a ball, such as the celestial sphere, which
surrounds the earth and contains all the stars in the sky.

The celestial sphere gives order out of chaos. It gives a way to predict star locations at different times, as
well as the time of night from the stars. Here is a physical model of the celestial sphere from around 1480.

1480-1481, http://www.artfund.org/artwork/3600/spherical-astrolabe
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According to legend, Ptolemy (AD 90 - AD 168) thought of stereographic projection after a donkey stepped
on his model of the celestial sphere, making it flat. Applying stereographic projection to the celestial sphere
results in a planar device called an astrolabe.

16th century islamic astrolabe

The tips on the perforated upper plate correspond to stars, while points on the lower plate correspond
to viewing directions. For instance, the point on the lower plate that the circles are shrinking towards
corresponds to the viewing direction directly overhead (i.e., looking straight up).

The stereographic projection of a point X on a sphere S is obtained by drawing a line from the north pole
of the sphere through X, and continuing on to the plane G that the sphere is resting on. The projection of
X is the point f(X) where this line hits the plane.
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One of the most surprising things about stereographic projection is that circles get mapped to circles.
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Circles that pass through the north pole get mapped to lines, however if you think of a line as an infinite
radius circle, then you can say that circles get mapped to circles in all cases.
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The case of a north pole circle is straightforward to prove. Simply extend the cutting plane P until it
intersects the ground plane G. That’s it! The stereographic projection of any point on the north pole circle
comes from a line within P , and of course the intersection of P and G is a line (or infinite radius circle).

The opposite direction is also easy. Consider any line in the ground plane G. Let P be the plane that
contains this line as well as the north pole of the sphere. The intersection of P and the sphere is the circle
which gets mapped to the line in G.
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conic sections
The general circles to circles result is surprising because you wouldn’t expect a cone with a circular section
in one direction to have a circular section in a different direction as well. To see how this is possible, we
start with a right circular cone, created by rotating one line about another.

Several properties are obvious, like the fact that horizontal sections of the cone are circles. Other properties
are less obvious, like the fact that non horizontal sections can be elliptical. I recently learned of a way to see
this using so called Dandelin1 spheres, which is so simple and beautiful that I can’t help showing it here.

The Dandelin sphere above the plane is tangent to the plane at a point, and tangent to the cone along a
circle. This sphere can be used to build two right triangles for any point x on the cone section. Both triangles
have a shared hypotenus from x to the center of the sphere, followed by edges of equal length (equal to the
sphere radius), followed by a right angle due to a tangency condition. It follows that these are identical right
triangles. The last edge on one of the triangles goes from x to where the sphere touches the plane, while on
the other it goes within the cone surface from x to where the sphere touches the cone.

Repeat this construction using a Dandelin sphere below the plane. For any x on the intersection curve, the
sum of the distances from x to each of the sphere intersection points (the ellipse foci) is equal to the length l
of the line segment on the cone that passes through x and is bounded by the two circles. These line segments
are clearly all the same length.

1Dandelin, Germinal Pierre. 1822. See also Measurement by Paul Lockhart 2014, as well as Grant Sanderson’s video from
2014 (3blue1brown).
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If you begin by defining an ellipse to be the locus of points in the plane for which the sum of the distances
to two focus points is fixed, then Dandelin spheres show that conic sections can be elliptical. Some basic
algebra then shows that these same conic sections satisfy

x2

a2
+
y2

b2
= 1. (1)

This establishes that ellipses can by described parametrically by x = a cos(θ) and y = b sin(θ), which in turn
makes it clear that scaling an ellipse in the x direction can turn it into a circle.

symmetry
An object is symmetric about a plane if the reflection of any point from the object about the plane is also
part of the object.

Symmetry is preserved by any distortion which doesn’t change the distance of points to the plane. For
instance, suppose a collection of points is symmetric about the yz plane, and we create a new object by
stretching in the y direction. This new object is still symmetric with respect to the plane.
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stretching a cone
Consider a right circular cone cut by a plane A to create an ellipse e. Let P be the plane which contains
the cone axis, and which intersects A in a horizontal line. Set up a coordinate system so that the cone axis
is the z-axis, and P is the xz plane.
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Replacing the x coordinate with αx transforms the ellipse e into a circle f . The circular cone is transformed
into an elliptical cone, and this transformed cone remains symmetric with respect to P . In particular,
reflecting the plane A and the circle f through the plane P gives a different plane A′ which intersects the
cone at a different circle b′. Thus there are two ways to slice the transformed cone which result in circular
sections.

We’ve established a pleasing duality. Slicing a right circular cone gives an ellipse, while slicing a right
elliptical cone gives a circle. The circular cone can be sliced in any direction to create an ellipse, however
the elliptical cone can only be sliced in two directions to create a circle.

Parallel sections generate the same shape, but at different scales, and so it is clear that the elliptical cone is
also a sheared right circular cone. So there are at least two ways to get the elliptical cone- by stretching and
also by shearing a right circular cone.
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back to stereographic projection
Now that we understand elliptical cones, consider the stereographic projection of a circle viewed from the
side (i.e., look at the plane defined by the cone axis and the center of the sphere). Let n denote the north
pole of the sphere, and let a and b denote the highest and lowest points (respectively) of the circular section.
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The lines from n to the circle form a sheared circular cone. From our previous work we know that the section
of this cone by the plane perpendicular to the page through v is also a circle. We just need to check that
v is perpendicular to u. We do this by drawing a line (in red) from the center of the sphere to the point c,
where the sphere intersects the cone axis.
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Let β denote the angle of the cone axis to the vertical. Notice that the angle at the bottom of the image is
α−β. Next, note that the angle of the red line to the vertical is 2β, and that the red line is the perpendicular
bisector of ab. It follows that α+ β = π/2, and from this we know that u and v are perpendicular.
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Higher Dimensions
Stereographic projection works in higher dimensions as well, as we now show by working in Rn. Let E be a
unit vector in Rn, let the ground plane G be the n− 1 dimensional subspace of Rn perpendicular to E, and
let S be the n− 1 dimensional sphere of radius 1

2 centered at 1
2E.

S = {x ∈ Rn such that x·x = x·E} (2)

Stereographic projection is a mapping f from S −E to G, given by

f(x) = E +
x−E

1− x·x . (3)

Theorem 1
The stereographic projection of a north pole circle in S is a line in G.

Proof
A north pole circle is the intersection of the sphere S with a plane P that passes through the north pole E.
x ∈ S means that x·x = x·E, while x ∈ P means that x·e = E·e, where e is the unit normal to P . From
these two conditions it is straightforward to show that

(x− b)·(x−E) = 0, (4)

where b = e(e·E) is the point on the circle closest to the ground plane G. That is, it follows from x ∈ S
and x ∈ P that x is on the circle with antipodal points E and b. Thus, even in Rn, the intersection of a
plane and a sphere is a circle! To show that f(x) is on a line in the ground plane G, we need

(f(x)− αa)·a = 0. (5)

for some scalar α and some vector a in G. Motivated by the case in 3D, we choose

α =
E·e

1− (E·e)2
and a = e−E(E·e) (6)

It’s then simple arithmetic to check that (5) is satisfied. �

Theorem 2
The stereographic projection of a non north pole circle in S is a circle in G.

Proof
A non north pole circle (henceforth simply a circle) is the intersection of the sphere S with a plane P
that does not pass through the point at E. As before, it is straightforward to show that points x in this
intersection also satisfy

(x− a)·(x− b) = 0, (7)

where a and b are two special antipodal points on the circle. If E and e are not aligned, a is the furthest
point from the ground plane G, and b is the closest point to G. Otherwise, a and b are any two antipodal
points on the circle. Because P is perpendicular to span(a,b), any x on the circle can be written as

x = αa + βb + u, (8)

where u is perpendicular to a and b. Projecting x onto span(a,b) results in a point on the line segment
from a to b, given by a + γ(b− a) for some γ ∈ [0, 1]. From this it is clear that

α+ β = 1. (9)

With these preliminaries established, we turn to our main result. The expression

F = (f(x)− f(a))·(f(x)− f(b)) (10)

being zero is equivalent to f(x) being on a circle in G with antipodal points f(a) and f(b).
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Expanding F , we find that

F =
AB − (x− a+A)(x− b+B)

(1− a)(1− b)(1− x)
, (11)

where a = a·E, b = b·E, x = x·E, A = x·(a− x), and B = x·(b− x). We find that the numerator is zero if
and only if H is zero, where

H = (x·x)(a·b) + (a·a)(b·b)− (x·a)(b·b)− (x·b)(a·a). (12)

Inserting (8) for x, and using the fact that E is in the span of a and b, we find that

H = (1− α− β)(a·a)(b·b), (13)

which we know is zero from (9). �

9



Inversion
Inversion maps any non-zero x ∈ Rn to e/‖x‖, where e is the unit vector pointing from the origin to x.
Everything inside the unit circle is mapped to outside the unit circle, and vice versa. Although things get
expanded and contracted, circles are mapped to circles.

The preservation of circles reflects a link to stereographic projection wherein points A and B on the sphere
are reflections of each other about the equatorial plane iff f(A) and f(B) are inversions of each other!
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To prove this, write any point A 6= 0 on the sphere as a + αE, where a·E = 0. The reflection of A about
the equatorial plane is B = a + (1 − α)E, and the reflection of B is A. From A·A = A·E, we have
a·a = α(1 − α), which makes it easy to see that f(B) = a/α and f(A) = a/(1 − α) are inversions of each
other.
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