
Arranging Rectangles
Hugh Dubberly and Patch Kessler1

January 25, 2009

Most documents consist of rectangular blocks of media, such as images, headers, paragraphs, and blank space.
An inconsistent arrangement of these blocks makes a document hard to navigate, however no variation is
boring. A balance can be achieved by arranging blocks against an underlying rectilinear grid.

Underlying Grid Arrangement 1 Arrangement 2

A grid is a tool for creating a visual theme and variations - a minimum of rules to create a maximum of
diversity (or freedom or choice). The idea of unity in diversity is important in many creative endeavors-
from architecture to music.

Grids have been described in the design literature for at least 50 years. French architect Le Corbusier
describes a grid system in his 1946 book Le Modulor [2]. Swiss graphic designer Karl Gerstner describes a
number of grid systems or “programmes” in his 1964 book Designing Programmes [1]. One of Gerstner’s
examples is a 15th century system for varying cathedral windows. Use of tatami mats appears to go back
1300 years. Writing systems (both alphabetic and ideographic) are even older examples. The classic work on
grids is Josef Muller-Brockman’s 1981 Grid Systems [3], which documents grid systems in his own work and
that of other Swiss designers of the “modern” period. Recently, grids have again become a popular subject
of design discussions, especially as a new generation of designers tackles the challenges of designing for the
web. See for example, http://www.thegridsystem.org/

While much design literature concerns grids, to our knowledge no one has worked out and published a rigorous
system for generating variations. That means that claims of minimum rules and maximum variation have not
been quantified. In this paper we explore the mathematical underpinnings of grid generation. We present a
simple algorithm for generating all rectangular arrangements on a given grid, as well as an expression for the
total number of possibilities (see the text following equation 1). This number is enormous even for simple
grids- there are 70878 different arrangements on the 4× 4 grid shown above.

We introduce a parent/child relationship between arrangements which links all arrangements together in one
big network. The number of immediate network relatives of any arrangement is small, and it takes only a few
jumps between immediate relatives to get from one arrangement to any other. We do this using interactive
Java applets created with Processing (http://www.processing.org/). Our applet for navigating 4 × 4
arrangements is posted online at http://www.mechanicaldust.com/applet/index.html.

This work has implications for automating the generation of design variations. We imagine off-loading the
labor of creating variations to a machine, thus enabling designers to focus on setting up rules and selecting
options. We imagine giving a program images and text, and being given back all possible ways of arranging
everything on a given grid.

After writing up these notes, we discovered a very similar work [4] by mathematicians J. Smith and H. Verrill,
which contains a way of generating variations as well as our formula for the total number of possibilities.

1 Hugh Dubberly: hugh@dubberly.com http://www.dubberly.com

Patch Kessler: patchkessler@gmail.com http://www.mechanicaldust.com

1

http://www.thegridsystem.org/
http://www.processing.org/
http://www.mechanicaldust.com/applet/index.html
http://www.dubberly.com
http://www.mechanicaldust.com

Problem Statement
An i-rectangle is a rectangle with integer height and integer width. Our problem is to find every collection
of non-overlapping i-rectangles with an m× n rectangular union (where m and n are integers).

Generating Arrangements
We generate arrangements by induction, starting with a 1×n rectangle. Each arrangement of blocks within
the 1× n rectangle corresponds to a different length n− 1 list of 1’s and 0’s; each of these lists is the binary
expansion of a non-negative integer less than 2n−1.

1 2 3 4 nn-25 n-1

0 1 1 0 01 1

We use the k × n arrangements to build the (k + 1) × n arrangements. The edges at the bottom of each
k × n arrangement correspond to an integer A.

0 1 1 0 01 1 B

1 0 1 1 10 1 A

What happens under
here doesn’t affect Ak

n

1

Each k×n arrangement corresponding to A leads to 2RAB different (k + 1)×n arrangements corresponding
to B, where RAB is an integer which depends on how well the binary expansions of A and B coincide. As
an equation, if P k

A denotes the number of k × n arrangements corresponding to A, then

P k+1
B = 2RABP k

A. (1)

Note that P 1
A = 1 for every A, and so the total number of m × n arrangements is the sum of the entries

comprising Sm−1 (m− 1 matrix multiplications), where S is the 2n−1 × 2n−1 matrix with Sij = 2R(i−1)(j−1) .
Given the Matlab function getR.m for finding RAB (see code on the next page), the total number of m× n
arrangements can be computed as follows.

function num=ArrangeNum(m,n)

n=n-1;

R=zeros(2^n);

for r=1:2^n

for c=r:2^n

R(r,c)=getR(r-1,c-1,n);

R(c,r)=R(r,c);

end

end

num=sum(sum((2.^R)^(m-1)));

This number explodes with increase in m and n. There are 322 arrangements on a 3 × 3 grid, 70,878
arrangements on a 4 × 4 grid, 84,231,996 arrangements on a 5 × 5 grid, and 535,236,230,270 arrangements
on a 6× 6 grid. The solution space of grid based page layouts is vast.

2

What about RAB?
Let (a1, a2, . . . , an−1) be a binary expansion2 of A, and let (b1, b2, . . . , bn−1) be a binary expansion of B.
Because binary expansions correspond to spatial arrangements, we care about the extent to which blocks in
two expansions overlap. Let (ã1, ã2, ã3, . . . , ãn, ãn+1) = (1, a1, a2, . . . , an−1, 1), and similarly define the b̃i’s
in terms of the bi’s. A block common to A and B is a set of integers from i to j > i for which ãk = b̃k = 0
for k between i and j, and for which ãi = b̃i = 1 and ãj = b̃j = 1.

= 1 Common Block

2009

Binary Expansions Padded With OnesIntegers

1 1 1 0 0 1 0 1 0 1 1 0 1
1 1 0 0 1 1 0 1 1 1 1 1 1

851

RAB denotes the number of blocks common to A and B, (for instance with A = 851 and B = 2009 shown
above, RAB = 3). RAB can be computed (in Matlab) as follows.

function R=getR(A,B,N)

bA=[1 bitget(A,1:N) 1];

bB=[1 bitget(B,1:N) 1];

U=bA|bB;

F=find(bA&bB);

s=zeros(numel(F)-1,1);

for k=1:numel(F)-1

s(k)=sum(U(F(k):F(k+1)));

end

R=sum(s==2);

The values Rij have an intriguing fractal character; the following is a scaled image of [Rij] for i and j ranging
from 0 to 255.

2A binary expansion of a non negative integer A is a list (a1, a2, . . . , an) of 1’s and 0’s for which A =
Pn

k=1 ak2k−1.

3

Symmetry
A set of points in R2 (such as the lines comprising an arrangement of rectangles on a grid) is symmetric with
respect to the mapping f : R2 −→ R2 if the set is equal to its image under f . The only mappings that matter
for arrangements of rectangles are horizontal and vertical reflections, and 180◦ rotations, (and 90◦ rotations
when the underlying grid is square). We have considered displaying only one of a set of arrangements related
by symmetry (see http://www.mechanicaldust.com/Documents/3by4.pdf), however we have abandoned
this because it forces the reflection and rotation to be done mentally, (which can lead to error).

A Family Tree
Let A denote the set of all m×n arrangements. If every line segment of a ∈ A is also present in b ∈ A, then
we say that a is an ancestor of b, and that b is a descendant of a, and we write a ≤ b. (The relation ≤ is a
partial order on A.)

< <

Although arrangements may exist which are not related by ≤, every arrangement is an ancestor of the
arrangement with no inside lines, and a descendent of the arrangement with all inside lines. We call a a
parent of b (and b a child of a) if a ≤ b and if there is no arrangement x for which a ≤ x ≤ b. Child-parent
relationships link all arrangements together in a network. The network of 2×3 arrangements is shown below,
with arrows pointing from parents to children.

4

http://www.mechanicaldust.com/Documents/3by4.pdf

This image of the 2 × 3 arrangements is a hand crafted mapping of network nodes into the plane of the
page. We do our best to keep the nodes evenly spread out, and at the same time to minimize the length of
the network edges as well as the number of edge crossings. We also try to arrange the nodes in a way that
highlights symmetry relationships.

We lack an automated method of displaying networks in 2D, however this isn’t a setback- having such a
method wouldn’t be helpful because the number of network nodes grows so quickly as the grid gets bigger
that any picture of all the nodes would be illegible (there are over 80 million nodes for the 5× 5 network).

Immediate Network Relatives
The number of immediate network relatives of any arrangement is much lower than the total number of
arrangements. In a 4 × 4 grid for instance, there are 70878 arrangements, and none of these has more
than 40 immediate relatives. In the following table and graph, Rk, Ck, and Pk are the number of 4 × 4
arrangements with k immediate relatives, children, and parents respectively.

k Rk Ck Pk

0 0 1 1
1 0 24 968
2 0 249 3964
3 0 1460 6606
4 0 5309 9211
5 0 12396 9720
6 0 18679 9868
7 0 17880 8556
8 226 10513 6480
9 1410 3608 5702

10 6328 668 3330
11 12356 60 2668
12 15117 14 1477
13 13722 12 1076
14 9907 4 604
15 6002 0 212
16 3221 0 292
17 1574 0 44
18 611 0 54
19 282 0 32
20 82 0 0
21 26 0 12
22 12 0 0
24 1 0 1
40 1 1 0

0 5 10 15 20 25 40
0

1

2

3

4

5

6

7

8

9

10

k

Rklog()

Pklog()

Cklog()

The number of steps between immediate relatives needed to get from one node to another is also very small.

Navigating Arrangements
We define the navigability of a network by the quotient RS/N , where R is the maximum number of immediate
node relatives (over all nodes), where S is the maximum, over all pairs of nodes, of the minimum number of
network steps between the pair, and where N is the total number of nodes. Our network has high navigability,
and so it’s easy to get from one node to another by jumping between immediate network relatives. We have
posted a Java applet for doing this at http://www.mechanicaldust.com/applet/index.html.

5

http://www.mechanicaldust.com/applet/index.html

References

[1] Karl Gerstner. Designing Programmes. 1964.

[2] Le Corbusier (Charles Edouard Jeanneret). Le Modulor. 1948.

[3] Josef Muller-Brockman. Grid Systems. 1981.

[4] Joshua Smith and Helena Verrill. On Dividing Rectangles Into Rectangles. Fibonacci Quarterly, (to
appear). Preprint at http://www.math.lsu.edu/~verrill/research/rectangles.pdf.

6

http://www.math.lsu.edu/~verrill/research/rectangles.pdf

