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Summary of Operator Facts and Terminology

The following is a summary of the major categories of operators on finite dimensional inner product vector
spaces, as presented in the wonderful Linear Algebra Done Right by Sheldon Axler.
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An operator and its adjoint are like a number in C and its conjugate.

self-adjoint (T = T ∗) operators have all real eigenvalues.
• these are also called hermitian operators.
• if F = R then the matrix of the operator
wrt any orthonormal basis is symmetric.

An operator is positive if it is self-adjoint and if 〈Tv, v〉 ≥ 0 ∀v ∈ V .

An operator is normal iff TT ∗ = TT ∗ (analogy with
C ignored because every point in the complex
plane would correspond to a normal operator).

• An isometry (TT ∗ = TT ∗ = I) occupies
something analogous to the unit circle.
• called orthogonal if F = R.
• called unitary if F = C.

T ∗

T
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Normal Operators: T ∗T = TT ∗

Self-Adjoint Operators: T = T ∗

Positive Operators

The complex spectral theorem applies to all normal
operators when F = C. It guarantees that ∃ an
orthonormal basis (ei) s.t. M(T, (ei)) = diag(λ1, · · · , λn)
where λi ∈ Spec(T ).

The real spectral theorem applies to all self-adjoint
operators when F = R. It guarantees that ∃ an
orthonormal basis (ei) s.t. M(T, (ei)) = diag(λ1, · · · , λn)
where λi ∈ Spec(T ).

If T is positive, then each λi ∈ Spec(T ) is non-negative.
Each positive operator has a unique positive square root.

If T is normal but not self-adjoint, and if F = R, then ∃ an orthonormal basis (ei) s.t. M(T, (ei))

is block diagonal, with blocks that are either 1 × 1 scalars in R, or 2 × 2, of the form

[

a −b

b a

]

with b > 0, (with at least one of these 2 × 2 blocks, or T would be self-adjoint).

Isometries:

• F = C and S an isometry ⇐⇒ ∃ an orthonormal basis (ei) of eigenvectors of S, each with corresponding
eigenvalue +1 or -1, i.e., M(S, (ei)) is diagonal with diagonal values of +1 or -1.

• F = R and S an isometry ⇐⇒ ∃ an orthonormal basis (ei) s.t. M(S, (ei)) is block diagonal with 1 × 1

blocks of value +1 or -1, and with 2 × 2 blocks of the form

[

cos θ − sin θ

sin θ cos θ

]

with θ ∈ (0, π).

Arbitrary Operators on V :
Every T ∈ L(V ) can be Polar Decomposed as T = S

√
T ∗T ; S is an isometry and

√
T ∗T is a positive operator.

Furthermore, the Singular Value Decomposition tells that ∃ orthonormal bases (ei) and (fi) of V s.t. ∀v ∈ V ,

Tv = s1〈v, e1〉f1 + · · · + sn〈v, en〉fn, that is, M(T, (ei), (fi)) =







s1

. . .

sn






, (1)

where si are the singular values of T , given by the eigenvalues of the positive operator
√

T ∗T . Each si is
real and non-negative.
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Eigenvector Orthonormality:
The complex spectral theorem tells that normality is equivalent to being unitarily diagonalizable. Of course,
many non-normal matrices are diagonalizable, only they aren’t unitarily diagonalizable, i.e., their eigenvec-
tors aren’t orthonormal. In fact, the case of an orthonormal basis of eigenvectors is obviously a rare thing-
in the space of matrices, the normal matrices have measure 0.

The matrices that can’t be diagonalized also have measure 0; these are the matrices with non-trivial Jordan
blocks, i.e., with non-trivial generalized eigenvectors. Usually, the matrix of T ∈ L(V ) has dim(V ) distinct
eigenvalues in C. With non-trivial Jordan blocks, some of these points in the plane have to exactly coencide,
which is obviously a rare thing.
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