Patch Kessler

rag replacements September 8, 2006

## Summary of Operator Facts and Terminology

The following is a summary of the major categories of operators on finite dimensional inner product vector spaces, as presented in the wonderful *Linear Algebra Done Right* by Sheldon Axler.

An operator and its adjoint are like a number in  $\mathbb{C}$  and its conjugate.



- If T is normal but not self-adjoint, and if  $\mathbb{F} = \mathbb{R}$ , then  $\exists$  an orthonormal basis  $(e_i)$  s.t.  $M(T, (e_i))$  is block diagonal, with blocks that are either  $1 \times 1$  scalars in  $\mathbb{R}$ , or  $2 \times 2$ , of the form  $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$  with b > 0, (with at least one of these  $2 \times 2$  blocks, or T would be self-adjoint).

Isometries:

- $\mathbb{F} = \mathbb{C}$  and S an isometry  $\iff \exists$  an orthonormal basis  $(e_i)$  of eigenvectors of S, each with corresponding eigenvalue +1 or -1, i.e.,  $M(S, (e_i))$  is diagonal with diagonal values of +1 or -1.
- $\mathbb{F} = \mathbb{R}$  and S an isometry  $\iff \exists$  an orthonormal basis  $(e_i)$  s.t.  $M(S, (e_i))$  is block diagonal with  $1 \times 1$  blocks of value +1 or -1, and with  $2 \times 2$  blocks of the form  $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$  with  $\theta \in (0, \pi)$ .

Arbitrary Operators on V:

Every  $T \in L(V)$  can be *Polar Decomposed* as  $T = S\sqrt{T^*T}$ ; S is an isometry and  $\sqrt{T^*T}$  is a positive operator. Furthermore, the *Singular Value Decomposition* tells that  $\exists$  orthonormal bases  $(e_i)$  and  $(f_i)$  of V s.t.  $\forall v \in V$ ,

$$Tv = s_1 \langle v, e_1 \rangle f_1 + \dots + s_n \langle v, e_n \rangle f_n, \text{ that is, } M(T, (e_i), (f_i)) = \begin{bmatrix} s_1 & & \\ & \ddots & \\ & & s_n \end{bmatrix},$$
(1)

where  $s_i$  are the singular values of T, given by the eigenvalues of the positive operator  $\sqrt{T^*T}$ . Each  $s_i$  is real and non-negative.

## Eigenvector Orthonormality:

The complex spectral theorem tells that normality is equivalent to being *unitarily diagonalizable*. Of course, many non-normal matrices are diagonalizable, only they aren't unitarily diagonalizable, i.e., their eigenvectors aren't orthonormal. In fact, the case of an orthonormal basis of eigenvectors is obviously a rare thingin the space of matrices, the normal matrices have measure 0.

The matrices that can't be diagonalized also have measure 0; these are the matrices with non-trivial Jordan blocks, i.e., with non-trivial generalized eigenvectors. Usually, the matrix of  $T \in L(V)$  has dim(V) distinct eigenvalues in  $\mathbb{C}$ . With non-trivial Jordan blocks, some of these points in the plane have to exactly coencide, which is obviously a rare thing.