Summary of Polynomial Interpolation Error Formulas

where \(n = 1 \), and agreement between the polynomial and the given function occurs at the \(n+1 = 2 \) points \(x_0 \) and \(x_1 \).

Case 1: Let \(p(x) \) be the degree < 2 polynomial that agrees with a function \(f(x) \) at \(x_0 \) and \(x_1 \), as illustrated. Then for every \(\bar{x} \), there is some \(\xi \) on the open interval \((\min(x_0, x), \max(x_0, x)) \) such that

\[
p(\bar{x}) - f(\bar{x}) = \frac{f''(\xi)}{2!} (\bar{x} - x_0)(\bar{x} - x_1)
\]

Case 2: Let \(p(x) \) be the degree < 4 polynomial that agrees with \(f(x) \) and its first derivatives at \(x_0 \) and \(x_1 \). Then for every \(\bar{x} \), there is some \(\xi \) on the open interval \((\min(x_0, x), \max(x_0, x)) \) such that

\[
p(\bar{x}) - f(\bar{x}) = \frac{f^{(4)}(\xi)}{4!} (\bar{x} - x_0)^2(\bar{x} - x_1)^2
\]

Case 3: Let \(p(x) \) be the degree < 3 polynomial that agrees with \(f(x) \) and its first derivative at \(x_0 \) and that agrees with \(f(x) \) (but not necessarily its first derivative) at \(x_1 \). Then for every \(\bar{x} \), there is some \(\xi \) on \((\min(x_0, x), \max(x_0, x)) \) such that

\[
p(\bar{x}) - f(\bar{x}) = \frac{f''(\xi)}{2!} (\bar{x} - x_0)^2(\bar{x} - x_1)
\]